DETERMINATION OF WATER RESOURCE CLASSES AND RESOURCE QUALITY OBJECTIVES FOR THE LOWER ORANGE CATCHMENT

Project Steering Committee Meeting 4

,

Presented by: Priya Moodley and Eddie van Wyk

Designation: PSP

Directorate: for Chief Directorate Water Ecosystems Management

Date: 18 November 2025, Online Meeting

WATER IS LIFE - SANITATION IS DIGNITY

STUDY OBJECTIVE

To determine Water Resource Classes and Resource Quality Objectives (RQOs) for all significant water resources in the Lower Orange Catchment Area to facilitate sustainable use of the water resources while maintaining ecological integrity.

Protection of Water Resources

Rivers, groundwater, wetlands and estuaries.

Description of use

Minimally used

Heavily used

Moderately used

Class

Ш

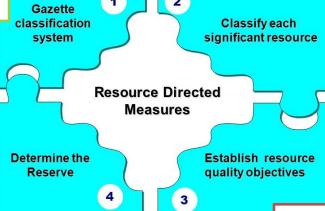
National system for classifying resources

Gazetted on 17 September 2010, Gazette No. 33541, Regulation 810

Defines and specifies the procedures for determining the classes of water resources (7 steps), the Reserve (8 steps) and resource quality objectives (6 steps).

Ecological

authorised


according to

criteria of equitable allocations beneficia

use in the public

interest and

RESOURCES

Ш 1

Each class represents:

a different **level of protection** that is required for the water resource, and the extent to which the water can be used.

Description of

Minimally altered

Moderately altered

Heavily altered

resource

Classification is used in two ways:

Ecological

Category

A-B

C

D

- To define the **present status** of the water resource
- To define the state towards which the water resource needs to be managed sustainably (future state).

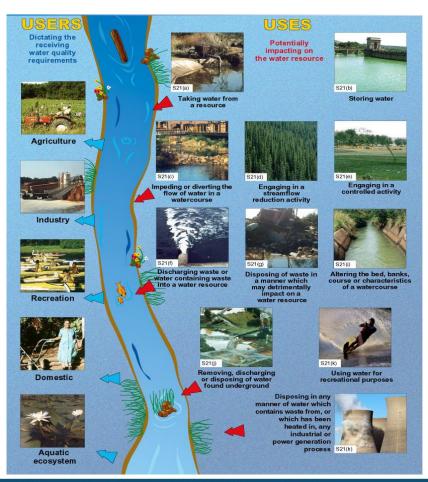
Only right in NWA

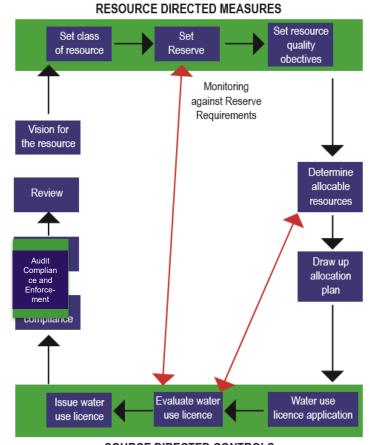
Allocations made in the

- The Reserve is an integral part of the RQO
- The Reserve is part of the water resource that is under the direct control of the Minister.
- It has priority over all other water use. Reserve must be met before water resources can be allocated to other water users

Targets or objectives/ management goals that provide statements about:

- what the quantity of the water should be (water level, pattern, timing)
- what the water quality should be (physical, chemical and biological
- what the **condition** of the **instream and riparian** (riverbank) habitat should be
- what the condition of the aquatic (water) animal and plant life should be.





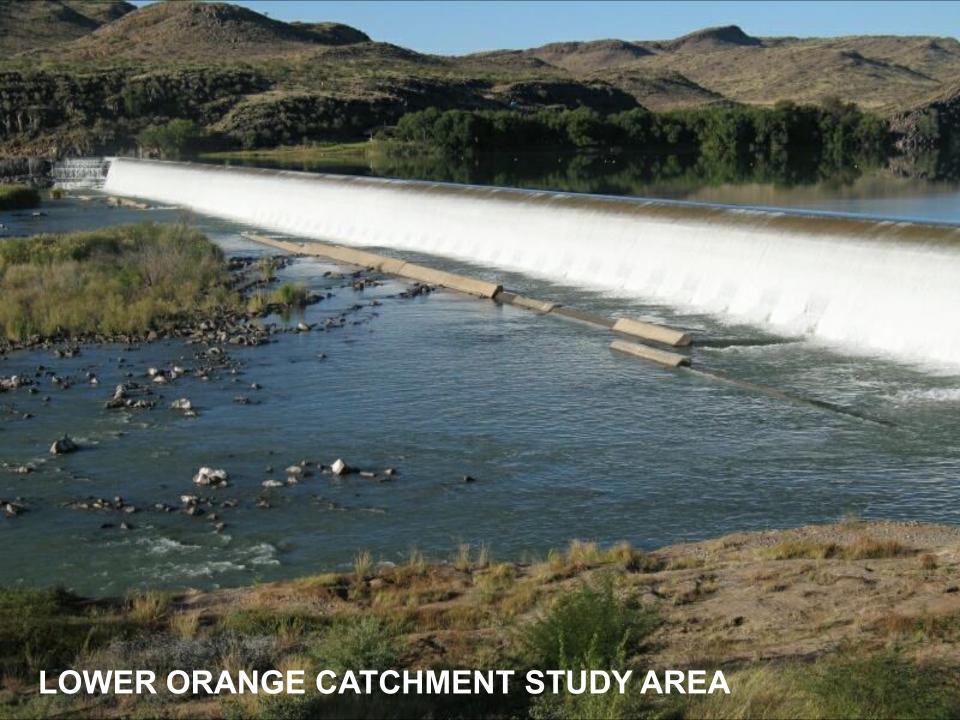
Balancing Use and Protection

Integrated Water Resources Management (IWRM)

Classification Process Resource Quality Objectives Process Step 1: Delineate the integrated units of analysis and Step 1: Delineate the integrated units of analysis and define the describe the status quo of the water resource or water resource units: resources: Step 2: Establish a vision for the catchment and integrated units Step 2: Link the Socio-Economic and Ecological Value and Condition of analysis; of the water resource or water resources; Step 3: Prioritise and select preliminary resource units for RQO Step 3: Quantify the ecological water requirements and changes in determination; non-water quality ecosystem goods, services and attributes; Step 4: Prioritise sub-components for RQO determination and Step 4: Determine an ecologically sustainable base select indicators for monitoring; configuration scenario; Step 5: Develop draft resource quality objectives and numerical Step 5: Evaluate scenarios within the integrated water limits; resource management process; Step 6: Agree on resource units, RQOs and numerical limits with We are stakeholders: Step 6: Evaluate the scenarios with stakeholders: Step 7: Finalise and gazette RQOs. Step 7: Gazette and implement the class configuration.

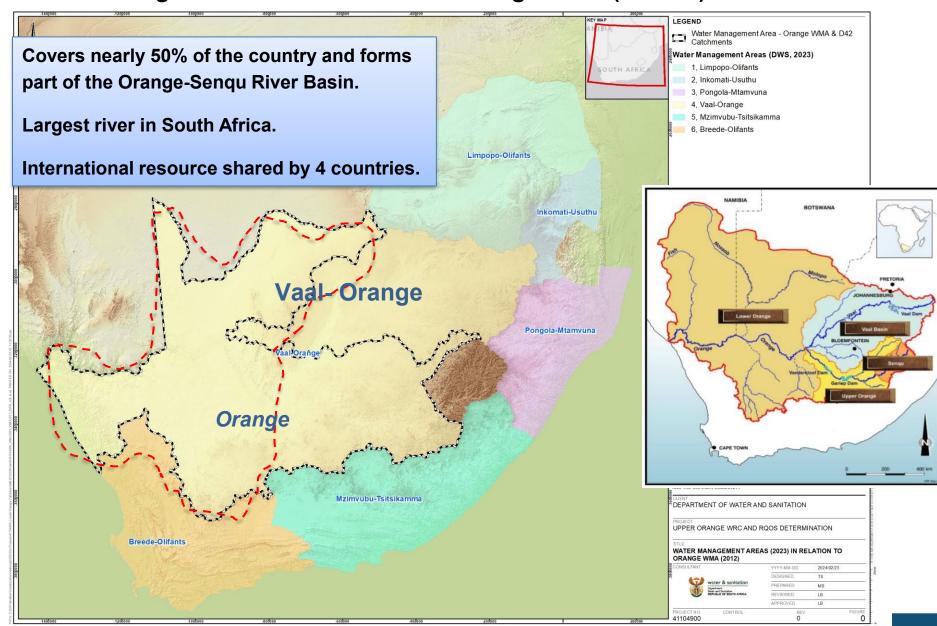
PURPOSE OF MEETING

To present the:

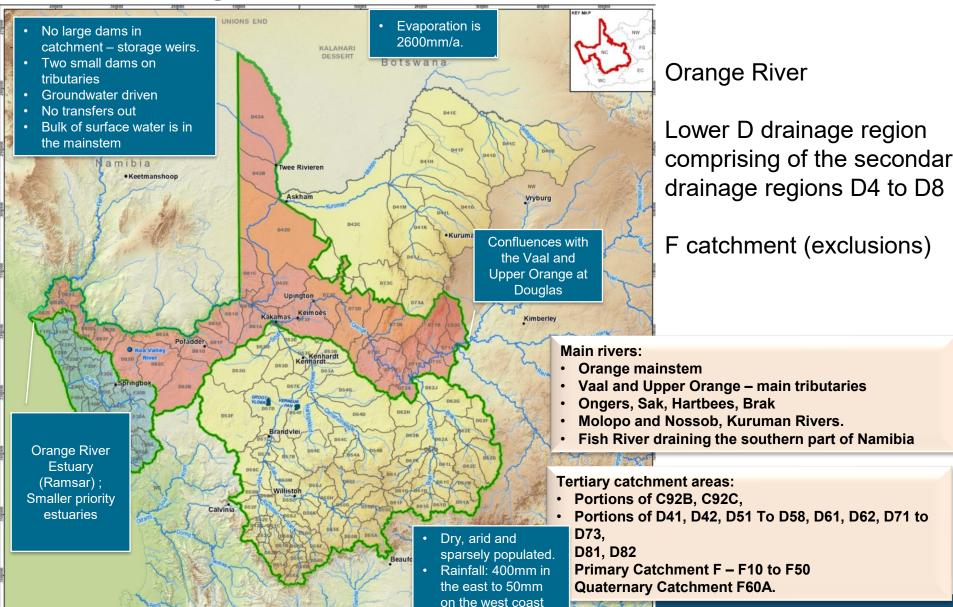

- Proposed draft RQOs that have been determined for the Lower Orange Catchment
- > Rivers, groundwater, estuaries, wetland components
- Draft report was circulated for comment (August 2025)

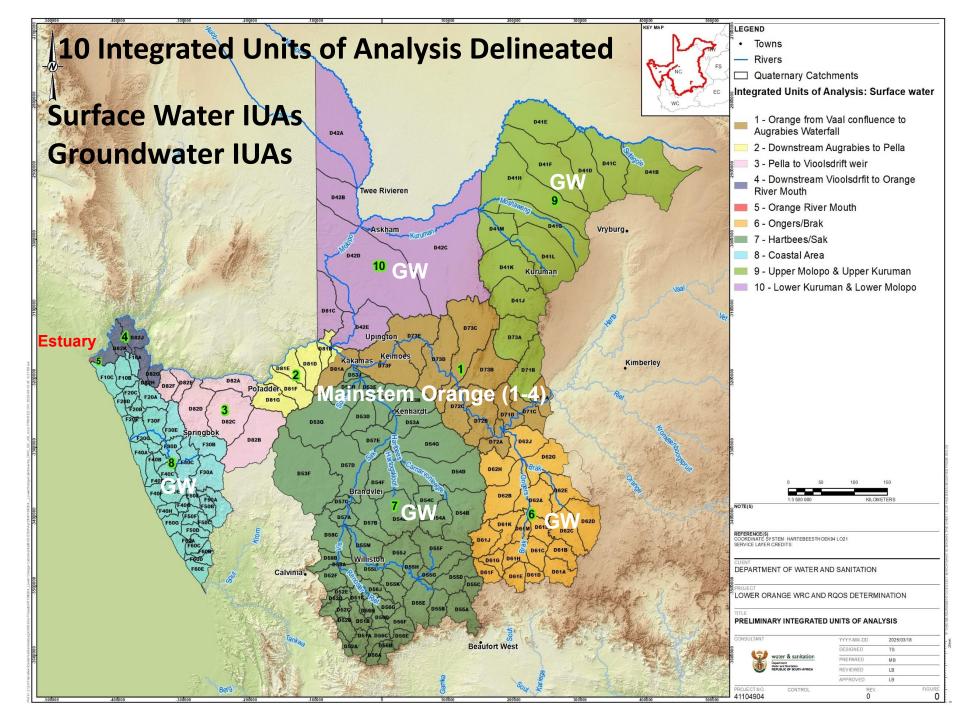
Report Contents Summary

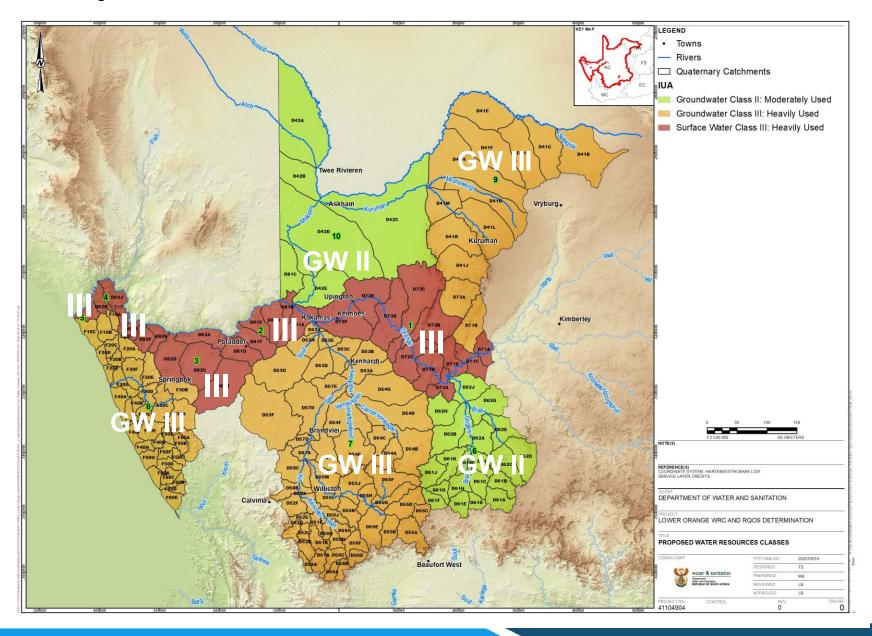
- Introduction and Background, Description of the study area
- Integrated Units of Analysis
- Resource Units and prioritisation rivers, wetlands, estuaries and groundwater
- Approach to determining and setting the RQOs and numerical limits
- Proposed Resource Quality Objectives and Numerical Limits:
 - Rivers
 - Groundwater
 - Wetlands
 - Estuaries


TABLE OF CONTENTS

1	INTRODUCTION	
1.1.	Study Objective	.1
1.2.	Purpose of this Report	2
1.3.	Study Area	2
2	INTEGRATED UNITS OF ANALYSIS	8
3	RESOURCE UNITS1	0
4	PRIORITY GROUNDWATER UNITS1	7
5	PRIORITY WETLANDS	8
6	SETTING OF RESOURCE QUALITY OBJECTIVES AND NUMERICAL LIMITS3	2
5.1	Rivers	2
5.2	Groundwater3	5
5.3	Wetlands	7
5.4	Estuaries	7
7	PROPOSED RESOURCE QUALITY OBJECTIVES AND NUMERICAL LIMITS3	9
7.1.	Rivers	9
7.1.1.	IUA1: Orange River from the Upper Orange confluence to Augrabies3	9
7.1.2.	IUA 2: Orange River from Downstream Augrabies to Pella	6
7.1.3.	IUA 3: Pella to Vioolsdrift weir	3
7.1.4.	IUA 4: Downstream Vioolsdrift weir to Orange River Estuary	5
7.1.5.	IUA 5: Orange River Estuary12	7
7.1.6.	IUA 6: Brak Catchment	4
7.1.7.	IUA 7: Hartbees/Sak Catchment14	1
7.1.8.	IUA 8: Coastal Areas	4
7.1.9.	IUA 9: Upper Molopo and Upper Kuruman20	9
7.1.10.	IUA 10: Lower Molopo and Upper Kuruman to confluence with the Orange	
	River	7
10	CONCLUSION23	9
11	REFERENCES24	0


STUDY AREA


Lower Orange Catchment of the Vaal- Orange WMA (WMA 4)


LOWER ORANGE CLASSIFICATION AND RQO STUDY

Lower Orange Catchment

Proposed Classes IUA Level

Resource Quality Objectives (RQOs)

- Purpose is to establish clear goals relating to the quality of the relevant water resources: provide limits or boundaries for the sustainable use of water resources
- In determining RQOs, a balance must be sought between the need to protect and sustain water resources and the need to use them
 - Must take account of user requirements and the class of the resource
 - Binding on all authorities and institutions
 - The RQOs may inform decision-making relating to the use of the water in a specific water resource.
- RQOs can be numerical and/or descriptive statements and may relate to the:
 - Water Quality
 - Quantity (pattern and timing of flow)
 - Character and condition of riparian habitat, and
 - Characteristics and condition of the aquatic biota.

Criteria for setting Resource Quality Objectives

- Simple, easily measured, understood, applied
- Use existing information where possible
- At appropriate scale and must detect change
- Comparable, repeatable, defensible
- May be drivers or response indicators
- Narrative and/or numeric
- Meaningful in terms of the Act
- RQOs cannot/do not:
 - Be applied to an individual licence
 - Replace the need for other monitoring programmes
 - Include every available indicator of resource quality
 - Be considered as absolute "truths"

RESOURCE UNITS' PRIORITISATION

WHERE SHOULD RQOs BE SET? (Prioritisation)

PRIORITY RESOURCE UNITS REGIONAL (IUA) SCALE **RIVERS WETLANDS** Biophysical Resource **GROUNDWATER** nodes Units **RIVERS GROUNDWATER IUAs WETLANDS** Quineries ECOSYSTEM SCALE ESTUARY'S **WETLANDS** RIVERS **GROUNDWATER Ecological** considerations **PRIORITISATION TOOLS** Water use impacts considerations **SPECIALISTS** STAKEHOLDER STAKEHOLDER WORKSHOP WORKSHOP

PRIORITY RUS& ECOSYSTEMS

HISTORICAL & EXPERT INFO

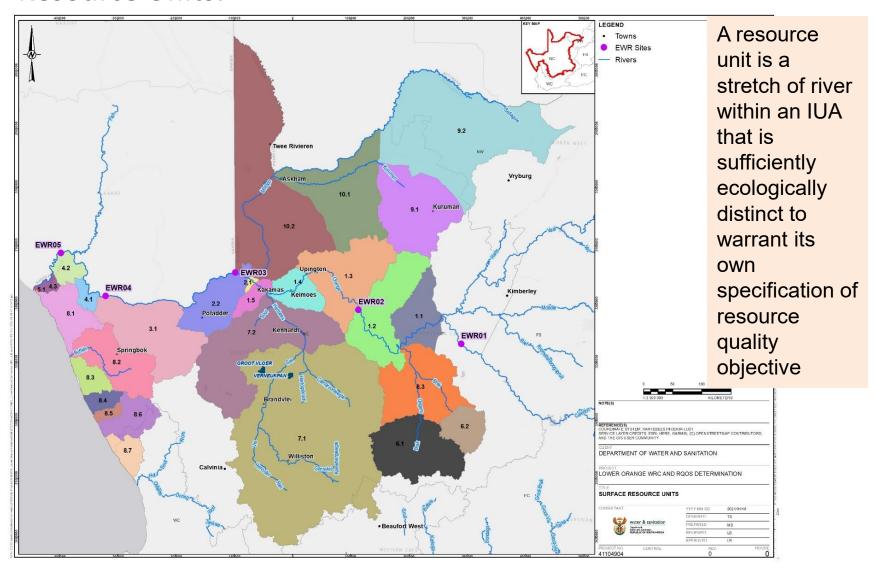
STAKEHOLDER REQUIREMENTS

DELINEATION OF RESOURCE UNITS

- RU resource units delineated
 - 27 river and estuary units
 - 28 Groundwater RUs
 - Priority wetlands/wetland clusters (linked to the river RUs)

PRIORITY RESOURCE UNITS: RIVERS

- Position of RU within IUA
- Importance of each RU to users
- Level of threat posed to the water resource quantity and quality for users and ecology (resource stress)
 - High utilisation
 - Compromised water quality; and/or
 - Future water resource developments which are planned
- Present Ecological State, Ecological importance/ sensitivity
- Strategic Water Resource Areas
- Freshwater Ecosystem Priority Area (upstream/within)
- Conservation sensitivities (specifically conservation targets set by the DEA)
- Importance for ecosystem processes/ biodiversity value)

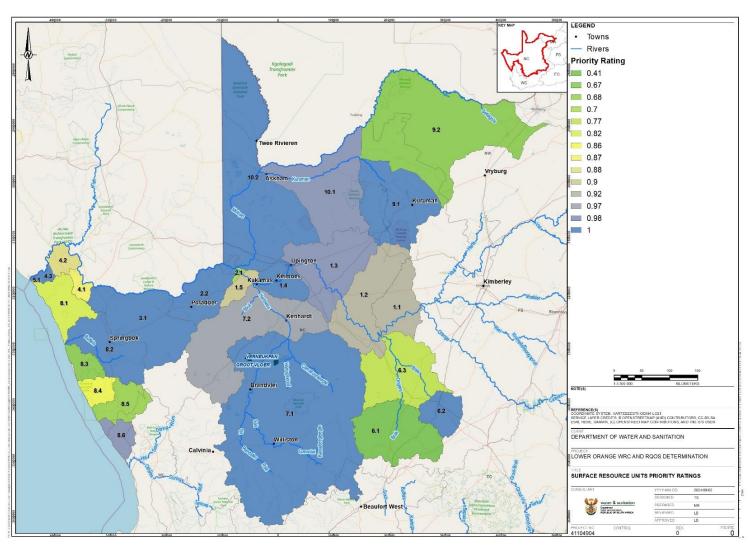

PRIORITY RESOURCE UNITS: RIVERS

- Threatened or sensitive vegetation ecosystems
- Alien vegetation infestation was assessed and considered if a problem
- Sensitive aquatic macroinvertebrates (water quality, flow, habitat)
- Fish support areas, fish sanctuaries, fish corridors with IUCN red listed fish species
- If any priority wetlands or groundwater areas, contributing to baseflows of rivers
- Social-Cultural Importance
- Management considerations
- Practical considerations

Ultimately:

- Prioritise mainstem Orange River
- Requiring different EWRs, due to different flow patterns
- Reaction of habitat and biota to stress
- Require different management and operational structures

Resource Units: 27 surface resource units

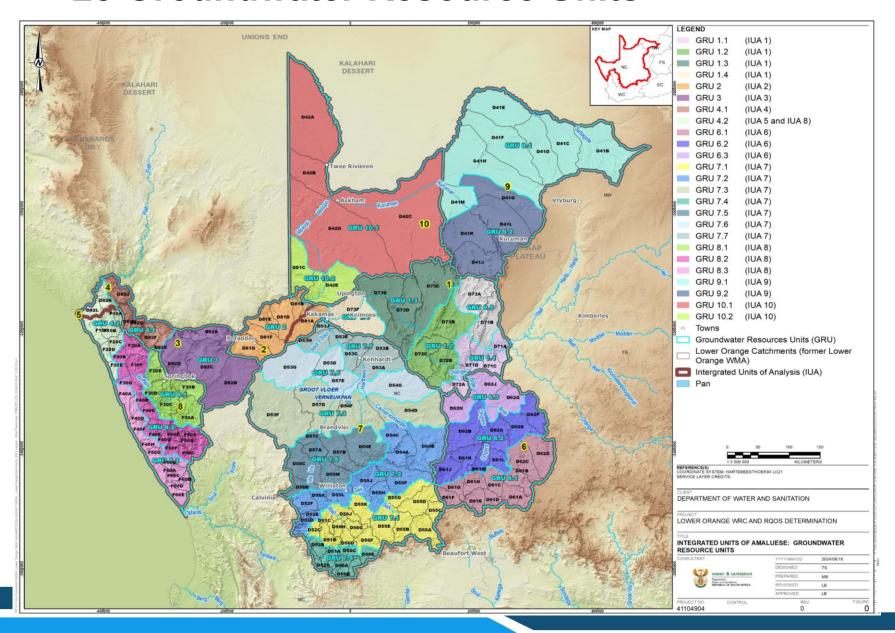

Prioritised River and Estuary Resource Units

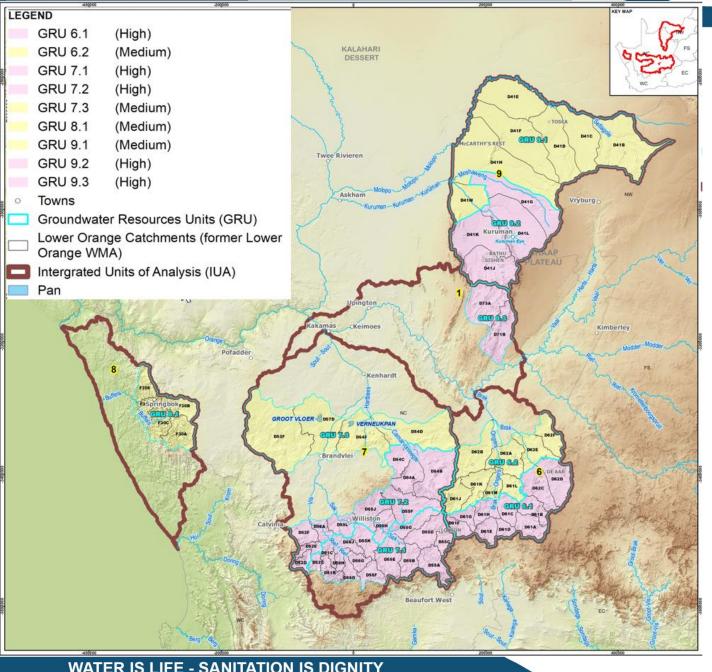
> **23** of 27 units

Not prioritised

Medium Priority

High Priority

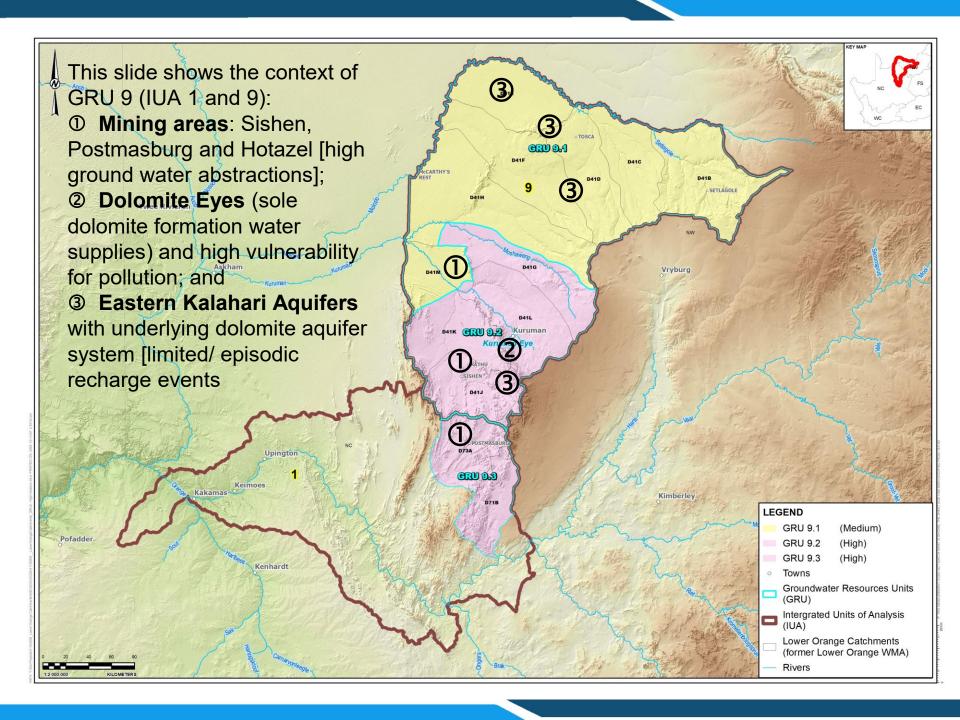



PRIORITY RESOURCE UNITS: GROUNDWATER

- Considerations and Criteria for GW RU rating:
 - Groundwater use (WARMS, NGA, density)
 - Strategic GW Areas (SW, GW, SW-GW)
 - Groundwater Dependency
 - Baseflow Component
 - Aquifer vulnerability
 - Stress Factor
 - Water Quality

- The GWRU delineation based on aquifer type and other physical, management and/or functional criteria
- Quaternary catchment forms basis of basic resource unit

28 Groundwater Resource Units

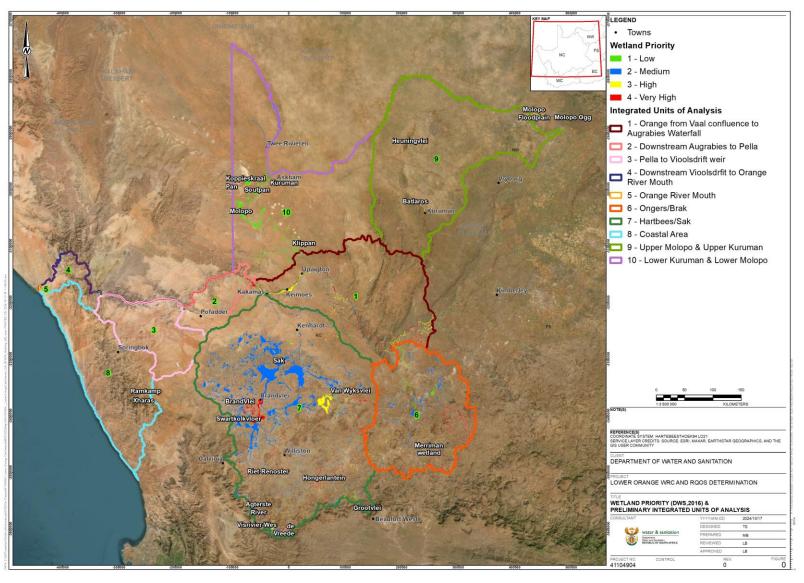


Priority Groundwater Resource Units based on:

Stress Factor which is the ration between groundwater use and recharge (Q_{use}/Re) ; and

Quality (QI) – based on the domestic water classification (C0-C4).

Medium \Rightarrow SI = <0.5 and $QI = \langle C2,$ High \Rightarrow SI = >0.5 and QI = >C2.


PRIORITY WETLANDS

- The delineation of the Wetland Resource Units (WRUs) was undertaken considering the following:
 - Identification of potential priority wetland areas
 - National Wetland Map 5
 - Screening Attributes/Characteristics
 - Important bird areas
 - Hydrogeomorphic unit types and their services
 - Located upstream of water supply areas (as applicable)
 - Identification of criteria
 - PES
 - Theat status score
 - Critical biodiversity areas
 - FEPA wetlands
 - Final selected priority Wetlands
- The identification of priority
 wetlands was focused on identifying
 systems at an ecosystem level and
 is strongly reliant on knowing where
 important wetland systems are.
- Existing wetland coverages/knowledge (& additional)

PRIORITY WETLANDS

Priority Wetland	Wetland	IUA	Catchment	Туре	Coordinates
1	Merriman	6	D61A	In-channel wetlands	-31.222040°; 23.613541°
2	Agterste River	7	D52B	In-channel wetlands	-32.184566°; 20.442429°
3	Brandvlei	7	D57C	Depression	-30.513907°; 20.481722°
4	De Vreede	7	D56A	Channelled Valley Bottom wetland	-32.514320°; 20.855526°
5	Grootvlei	7	D55A	Channelled and Unchannelled Valley Bottom wetland	-32.163926°; 22.471803°
6	Grootvloer	7	D57D	Depression	-30.040114°; 20.603565°
7	Hongerlantein	7	D55K	In-channel wetlands	-31.659053°; 21.250350°
8	Narooga Pan	7	D57D	Depression	-30.373035°;20.396123
9	Riet-Renoster	7	D58A, D51C, D56J	In-channel and Channelled Valley Bottom wetland	-31.601148°; 20.618905°
10	Swartkolkvloer	7	D58C	Depression	-30.755058°;20.066265°
11	Van Wyksvlei	7	D54C	Depression	-30.438115°; 21.773985°
12	Visrivier-wes	7	D52A	Channelled and Unchannelled Valley Bottom wetland	-32.424881°; 20.397755°
13	Ramkamp	8	F30 & F50	Unchannelled Valley Bottom wetland	-30.32454444°; 18.0863702°
14	Xharas	8	F30	Valley head seep and Channelled Valley Bottom wetland	-30.3387778°;18.1073694°
15	Batlaros	9	D41L	Channelled Valley Bottom wetland	-27.298556°; 23.327279°
16	Heuningvlei	9	D41H	Depression & Hillslope Seepage wetlands	-26.313500°; 23.143620°
17	Kuruman	9	D41L	Channelled Valley Bottom wetland	-27.448869°; 23.436466°
18	Klippan	10	D42D	Depression	-27.969600°; 21.279200°
19	Koppieskraal	10	D42D	Depression	-26.982333°; 20.279445°
20	Soutpan	10	D42D	Depression	-27.110332°; 20.440887°

Prioritised Wetland/Wetland Systems

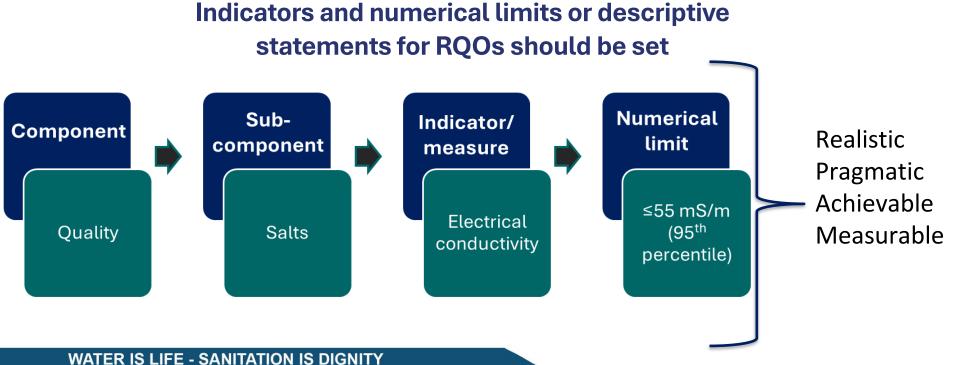
PRIORITY RESOURCE UNITS: ESTUARIES

- Estuaries is a single RU based on the Estuarine Functional Zone
- Water resource importance (use/quality)
- High ecological importance (resource is currently/future stressed)
- Previous assessments
- Further considerations/inclusions:
 - High Ecological Category: A, A/B or B (High EC);
 - Critically endangered species
 - Carbon sequestration (mangrove, salt marsh)
 - Nursery areas



SUB-COMPONENT PRIORITISATION AND INDICATOR SELECTION

WHAT SHOULD RQOS BE SET FOR?


WATER IS LIFE - SANITATION IS DIGNITY

RESOURCE QUALITY OBJECTIVES

RESOURCE QUALITY OBJECTIVES

- Components sub-components indicators: for setting the RQOs
- Based on:
 - Activities that impact on water resources
 - User requirements
- Protection of the resource

SUB-COMPONENTS FOR WHICH RQOs HAVE BEEN SET

Rivers				
Component	Sub-component			
Quantity	Low Flows			
Quantity	High Flows			
	Nutrients			
	Salts			
Quality	System variables			
	Toxics			
	Pathogens			
	Geomorphology			
Habitat	Riparian vegetation			
Tiabitat	Integrated Habitat			
	(instream and riparian)			
	Fish			
Biota	Macroinvertebrates			
	Diatoms			

Estuaries				
Component	Sub-component			
Hydrodynamics	Mouth condition			
Hydrodynamics	Abiotic states			
	Salinity			
	Dissolved inorganic nitrogen			
	Dissolved inorganic			
Quality	phosphate			
	Water clarity			
	Dissolved oxygen			
	Toxic substances			
	Pathogens			
	Intertidal			
Habitat	Subtidal			
	Substrate type			
	Microalgae			
	Macrophytes			
Biota	Macroinvertebrates			
	Fish			
	Birds			

Groundwater		
Quantity (abstraction)		
Aquifer water level		
Water quality		
Protection zones		

Wetlands	
Component	Sub-components
Quantity	Water inputs
Quantity	Distribution and retention
Quality	Nutrients, salts, system variables
Habitat	Vegetation, PES
Biota	Birds, Aquatic Inverts

SETTING OF RESOURCE QUALITY OBJECTIVES

Rivers

- Approach:
 - Data retrieved from previous studies for the catchment
 - Intermediate: RQOs for relevant indicators (DWS, 2016)
 - Rapid 3: RQOs for relevant indicators, geomorphology and riparian vegetation (IHI as surrogate)
 - Field verification: used RQO evaluation tool to identify sub-components
 - Rivers: REMP Data (inverts and fish)
 - Other previous EWR studies
- Water quality:
 - Largely mainstem Orange River (regional monitoring; Gariep Watch)
 - DWS, 2008 setting RQOs for water quality for Reserves in accordance to the ecological category for water quality
 - Present status or ecological water quality requirement (stricter)
 - Inferred from diatoms and macroinvertebrates (both respond to WQ changes)
 - Health risk guidelines or RQOs for Escherichia coli (as used by the National Microbial Monitoring Programme (NMMP) of South Africa (DWAF, 2002)

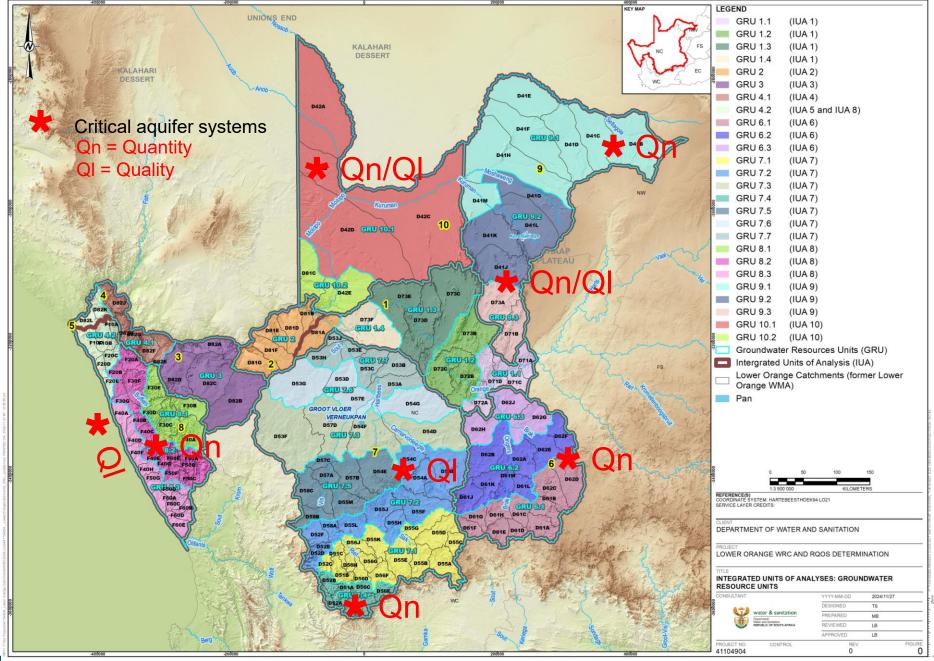
SETTING OF RESOURCE QUALITY OBJECTIVES

Estuaries

- Approach:
 - Data retrieved from previous assessments for the catchment (once off sampling)
 - Priority estuaries: Orange Estuary and 6 smaller coastal
 - NBA, 2018, plus revisions
 - DWS, 2016 Reserve Study

Groundwater

- Approach:
 - Data retrieved from available information for the study area
 - Priority groundwater:
 - RQOs for indicators
 - Abstraction Rates, water levels, constituents of concern
 - Water Levels Hydstra
 - Chemistry


Wetlands

- > Approach:
 - Data retrieved from all previous assessments for this catchment (limited)
 - RQOs only set for priority wetlands for relevant indicators (availability)

DRAFT RESOURCE QUALITY OBJECTIVES PROPOSED

Establishment of **RQO Indicators-Measures-Narratives** for groundwater resource units is based on the following measurable hydrogeological parameters:

- Quantity (Mm³/a as measures and limits):
 - Recharge Mm³/a (merely from chloride mass balance methodology + GRA II Assessments);
 - Groundwater Use Mm³/a (estimated from GRA II Assessments and updated WARMS dataset and hydrocensus surveys) and
 - Groundwater Stress Index (calculation indicating the aquifer stress factor –
 Specifies an upper limit of 65% a Poor Aquifer Condition)
 - Aquifer water level depth (metres below ground level obtained from groundwater monitoring programs).
 - Water depth and water level depth trend (indicator and measure) is (i) an indicator for aquifer depletion due to abstraction and should be followed by (ii) a phase where abstraction is decreased to allow water level recovery; and
 - Specify water limits such a (i) Dynamic Water Level limit (an operational level range) and (ii) Critical Water Level (not less than 5 m above the "master water strike depth)".

- Quality (mgTDS/L and specific hydrochemical constituent concentrations as measures and limits):
 - Total Dissolved Solids Provides an direct indicator of the groundwater quality status
 - TDS as aquifer water quality-type indicator; and/or
 - TDS **trend** (neutral, up/down time series) and **gradient** (measure of rising/recessing trend) for aquifer water quality status
 - Water quality dissolved constituents present and concentrations:
 - Aquifer water quality type: A measure of specific baseline-aquifer water quality type(s), i.e., Ca/Mg-HCO₃, Na-HCO₃, Na-Cl, Ca/Mg-SO₄ the measure is to remain aquifer water type to the baseline water type by preventing hydrochemical pollution or other deteriorating sources;
 - Water quality trend (indicator) and gradient (measure of rising/recessing trend over time) using specific hydrochemical constituents like Na-Cl or Ca/Mg-SO₄; and
 - Specific CoCs like Nitrate, fluoride, ammonium (NH_4) or ortho-phosphate (PO_4)

- Aquifer Vulnerability (specific indicators that arise from primary or secondary conditions that may impacts on the vulnerability of the aquifer system posing a concern/threat for the health/aesthetic status of the aquifer system). Several Aquifer Vulnerability attributes have been included as indicators with proposed measures to impose specific protection protocols for the groundwater resource(s).
 - Depth to water level Shallow aquifer systems (<60 mbgl)
 - Measure: <u>radius of influence</u> ([spatial metres] between abstraction point and potential impacted source (wetlands, dolomite eyes and flood plain alluvial aquifers));
 - Preferential recharge zones [demarcations] of dolomite (karst) aquifer systems having potential pollution risk (due to poor waste and wastewater treatment); and
 - <u>Limit on groundwater level depletion</u> to protect indigenous flora (such as the Kathu Camelthorn Forest in the .

- Water level depletion (alien vegetation and irrigated land)
 - Measure: <u>arial coverage (ha's)</u> and groundwater level impact of uncontrolled alien tree population expansion along drainage channels (rivers) and large veld areas (<u>starts with</u> <u>satellite imagery in critical areas</u>); and
 - Measure: <u>expansion of hectares</u> used for groundwater irrigation schemes in river flood plains and large aquifer systems (DLMTs).
- Aquifer Recharge (mm/a) and Aquifer Abstraction (groundwater use)
 - Measure: <u>annual estimations</u> of recharge volumes to specify annual "allocable yield" volumes; and
- Hydraulic Conductivity (HC)
 - Measure: As an indicator some aquifer formations (fractured and weathered thick sandstone formation have high hydraulic conductance's that may allow high-yielding boreholes that could allow over-abstraction of the aquifer water balances — bulk water supply schemes.
 - Measure: aquifers with high HC susceptible to significant lateral impacts (i.e., sandstone/dolomite aquifer types) due to high groundwater flux in aquifer and storativity (/storage) that may enhance the migration of unwanted polluted substances to enter the deeper parts of the aquifer system.

IUA 8 - GRU 8.1, 8.2 & 8.3

WATER RESOURCE CLASSIFIACTION: III (Class 3 (C))

Primary groundwater quality impacted by marine aerosols and water-rock formation interaction (elevated salinity, e.g. NaCl and fluoride). Water quality criteria is the most critical measure/objective due to natural conditions/ climate impact(s).

RESOURCE QUALITY OBJECTIVES:

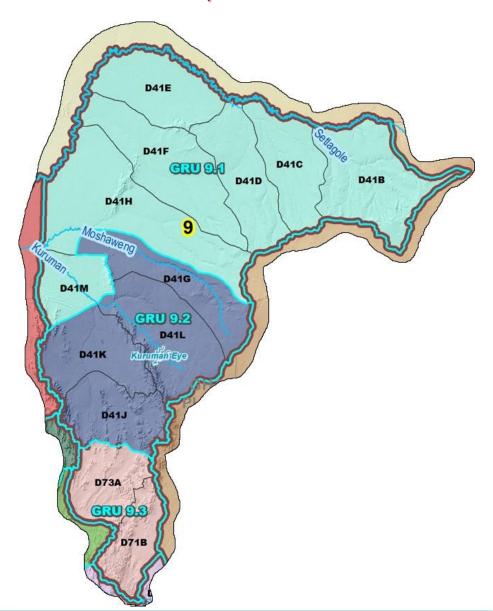
Quantity:

SI status is Moderately Used (~48%).

RQOs:

- 1 Allocable Yield Categories: a C1;
- 2 Annual water level trend should be stable/oscillating according to the annual recharge phases.

Quality:


Current WQC = Marginal WQT Class 2 for all GRUs RQOs:

- 1 Upper limit for TDS be limited to 2400 mgTDS/L;
- 2 WQl Trend Indicator: NaCl dilution in aquifers.

Vulnerability:

- 1 –Background NO3 & F Municipal Well Fields and stock kraals.;
- 2 -Note: Insignificant to Low Borehole Yield Classification.

IUA 9 - GRU 9.1, 9.2 & 9.3

WATER RESOURCE CLASSIFIACTION: III (Class 3 (C))

Shallow hard rock formations (high recharge) and dolomite aquifer (high potential for serious pollution form surface flows). High demand for groundwater exploitation (no surface water resources available). Significant mining developments (dewatering) taking place and high rural population growth (high domestic use).

RESOURCE QUALITY OBJECTIVES:

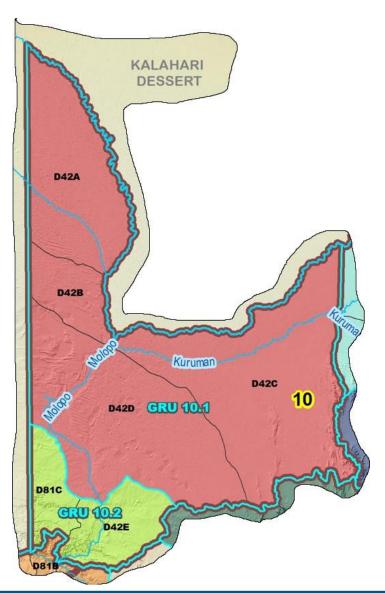
Quantity:

SI status is Moderately (9.1 at 42%) and Heavily Used (9.2 & 9.3 at ~89%).

RQOs:

- 1 Allocable Yield Categories: a upper limit Class C1 (9.1) and C3 (9.2 & 9.3);
- 2 Water trend analyses should not remain negative for >2 HCs.

Quality:


Current WQC = Marginal WQT Class 2 for all GRUs RQOs:

- 1 Upper limit for TDS be <1000 mgTDS/L; and
- 2 "Three Tire" water quality limits proposed.

Vulnerability:

1 – Water level recession trends <2.5m/a MAX 1½-yrs.

IUA 10 - GRU 10.1 &10.2

WATER RESOURCE CLASSIFIACTION: II (Class 2 (B))

Very limited groundwater recharge (MAP <250 mm/a to 75 mm/a (GRU10.2)
Kalahari Group Aquifer Systems with only sporadic recharge events (flush flooding in Molopo and Kuruman River. Low yielding vulnerable freshwater aquifers in Lower Kuruman River (Van Zylsrus – Andriesvale Area).

RESOURCE QUALITY OBJECTIVES:

Quantity:

SI status is Moderately (42%).

RQOs:

- 1 Allocable Yield Categories: a Class C2 recommended;
- 2 Borehole yields should be limited to prevent saline water intrusion from deeper saline aquifer system.

Quality:

Current WQC = Marginal WQT Class 2 for all GRUs RQOs:

- 1 Upper limit for TDS be <1000 mgTDS/L;
- 2 Specific limits for Na, TAL, Cl and SO4.

Vulnerability:

- 1 Water level recession trends <0.5m/a MAX 1½ yrs
- 2 Over abstraction from unique T-Qk Aquifer Systems.

Groundwater RQO tables – what you will see

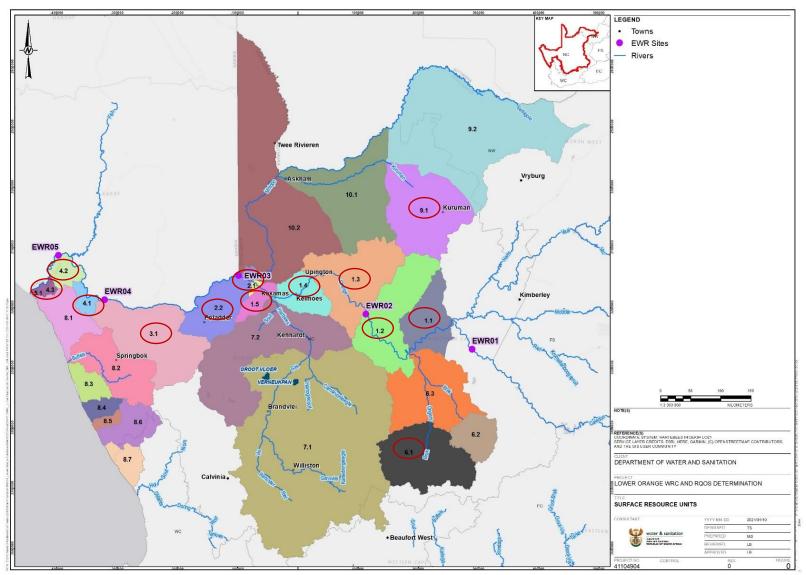
Sub-	component	Indica	Indicators Measure		Context o/t RQO / Narrative
IUA 9 (GRUs 9.2, 9.3) Complex aquifer combinations including shallow hard rock formation (high recharge) and dolomite aquifer (high potential for serious pollution form surface flows). High demand for groundwater exploitation (no surface water resources available). Significant mining developments taking place and high rural population growth (high domestic use)					
	Aquifer water level (table) depths (mbgl) or elevation of aquifer saturation elevation (mamsl)	Rainfall Depths Borehole water level (depth metres below ground level).	Groundwater Annual Recharge (mm/a) Water Level (time series) trend analysis.	recharge rates figures instead Test scenarios	lower rainfall depths have lower s. Consider actual annual rainfall d of Long-Term average values. s using depleted rainfall input. f recharge and abstraction
Quantity (Qn)	Sustainable Use:	Stress Index (factor) (Water Use volumes). Upper limit of SI value = 65% (or 0.65). Allocable Yield (AIY): Difference between water used (BHN+EWR+GwBF)+Total Use) and an annual-based recharge value.	Groundwater recharge values and Total Groundwater Use figures. Establish water use figures for main water users. SI MAX 0.65 Allocable Yield (MIN 2.0 Mm3/a)	Important asp Use in SI Clas Available Volu	llocable Yield" and status of e volume (89% Alloc'd). ect of calculation of Total Water sification. me (2025) = 96 Mm3/a ctors (Stock watering & irrigation):

0.8 and 35Mm3/a.

Sub- component		Indicators	Measures	Context o/t RQO / Narrative
Quality (QI)	TDS, Macro element concentra tions and Constitue nts of Concern (CoCs) and Microbial Status.	Monthly salinity measurements (TDS mg/L). Measure TDS-values for time series analysis. Macro element concentrations: Sodium; TAL; Chloride; and Sulphate. CoC: Fluoride, Nitrate, Ammonia and Orthophosphate.	TDS (salinity): Concentration should be limit to ≤700 mgTDS/L. TDS trend analyses should not indicate a rising trend over 2 consecutive years. Calculated TDS-Trend Analyses. Quarterly analyses required and individual concentrations should be limit to a Class 1 (Good) water quality criteria: Sodium: <60 mgNa/L. Long-term (7.5-yr) trend should not approach +10% TAL: dominant anion hydrochemical constituent – should remain <400 mgHCO3/L. Chloride: <53 mgCl/L. Long-term (7.5-yr) trend should not approach+10%. Sulphate: <27 mgSO4/L. Long-term trend should not approach+10%.	Baseline water quality indicator (natural water quality status to remain within a 10% oscillation). Indicator of poor recharge/overabstraction/pollution over time. As per Reserve Determination specifications. In addition, any of these indicators may have relevance to pollution sources from agricultural and domestic water treatment related activities. Long-term TDS trend should not approach +10% (not to overrun 770 mgTDS/L). Water quality objective: QI = C1 (Good water quality type).
		Nutrients Nitrate: NO3, mgN/L; Toxin– Fluoride: F, mgF/L;	Total coliform counts: <10 counts/100 ml) Nitrate: Less than 10 mgN/L; Fluoride: <1.0 mgF/L; Arsenic: <0.05 mgAs/L; Iron-Manganese: <0.2 mgFe/L and <0.4 mgMn/L.	Total coliform counts and nitrate/nitrite concentrations are indicators of domestic pollution and should be regarded as critical water quality indicators – annual trends are therefore required through specific monitoring programmes. Additional care: PO4 and HN4.

Sub- component		Indicators	Measures	Context o/t RQO / Narrative
	Aquifer water level trend	Annual positive or negative water level trend (time series dataset) – water level recession rate (M/a)	Annual water level recession rate must be less than 2.5 m/a. If an ongoing negative trend is observed, abstraction yield (L/s) should be decreased by subsequent intervals of 12.5% per annum until stable trend is observed (i.e., until sufficient recharge has occurred to reset the negative trend.	Water level trend should be stable over time and reporting natural seasonal oscillations driven by wet/dry climate cycles – any deviation from this trend-pattern should be regarded as an indicator of aquifer stress (too low recharge and/or over-abstraction). If trend remains negative (+2 Hydrological Cycles), a special investigation is required to identify and address the cause of the water level recession.
Vulnerability Status	Hydro- chemical trends:	Time series trends of TDS obtained from quarterly water quality analyses (monitoring program/network required).	Medium-term trend (5-yr cycle) increases should not approach +10% (as indicated by the Reserve Determination guideline). "Three Tire" Water Quality Approach: T1, T2 and T3:	Quality trend(s) should stay within natural annual oscillation (annual recharge freshening). Medium-term (18 to 24 months) negative trend must be investigated (source identification). The critical constituent for the area is nitrate due to industrial and domestic waste generation.
	Aquifer Hydraulic Charac- teristics.	Hydraulic Conductivity Aquifer System(s).	Mapping of high yielding aquifer systems (Aquifer Zoning).	Potential to over-abstract aquifer when BYC indicates High to Significant BYCs. Stress Index Limitation (65% or 065). High HC unsaturated zone(s) enhances preferential infiltration into to saturated zone.

Sub- component		Indicators	Measures	Context o/t RQO / Narrative
Protection Criteria	Hydro- chemical trends:	Multi analytical parameter limits established based statistical evaluations of groundwater quality datasets	"Three Tire" Water Quality Approach: T1, T2 and T3: Where: In mining/industrial /high level agricultural zones,	T1–Site area of activities, allow up to 95 th Percentile driven by impact: pH: 6.1 to 8.31; NO ₃ –N: 71 mg/l; Salinity TDS: 1800 mg/L; Sodium: 170 mg/L Chloride: 770mg/l; Sulphates: 160 mg/l; and Fluoride: 0.8 mg/l. T2–Buffer Area: Allow up to 75 th Percentile supported by buffer area background signatures: pH: 6.1 to 8.1; NO ₃ –N: 9.8 mg/l; Salinity TDS: 1000 mg/L; Sodium: 60 mg/L Chloride: 91 mg/l; Sulphates: 50 mg/l; and Fluoride: 0.43 mg/l. T3–Background or Reference Area: Allow up to MEDIAN -value +10% in key CoCs as indicated above (Quality).

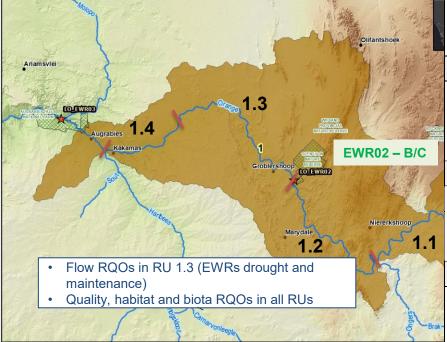


SETTING OF RESOURCE QUALITY OBJECTIVES

Rivers

- Approach:
 - Understanding the catchment
 - Water resource classification proposed classes
 - Data retrieved from previous assessment/ studies for the catchment
 - Intermediate: RQOs for relevant indicators (DWS, 2016)
 - Rapid 3: RQOs for relevant indicators, geomorphology and riparian vegetation (IHI as surrogate)
 - Field verification: used RQO evaluation tool to identify sub-components
 - Rivers: REMP Data (inverts and fish)
 - Other previous EWR studies
- Water quality:
 - Largely mainstem Orange River (regional monitoring; Gariep Watch)
 - DWS, 2008 setting RQOs for water quality for Reserves in accordance to the ecological category for water quality
 - Present status or ecological water quality requirement (stricter)
 - Inferred from diatoms and macroinvertebrates (both respond to WQ changes)
 - Applicable guidelines

13 Resource Units: Proposed River RQOs


	Example River RU									
Resource Unit	Component	Sub- component	RQO	Indicator	Nur	merical Limit/ m	easure	Context/Rationale for RQO/Numerical limit		
1.3 Orange River from Boegeberg weir to Upington	Quantity	Low flows	(-28.969493: 28.17843) in D73C	Maintenance and drought flows required for the Orange River upstream of the EWR site	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	Maintenance flows (m³/s 28.211 36.708 39.920 47.269 61.393 60.014 53.153 39.716 30.813 24.956 23.653 24.231	Drought flows (m³/s) 15.0 22.0 22.0 33.0 33.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	EWR implementation (maintenance of required ecological status)		
	Quality	Nutrients	Nutrient levels must be improved to support healthy aquatic ecosystem integrity, water user requirements and sustain ecological status.	Total Inorganic Nitrogen (TIN) as N Orthophosphate as P Nitrate (NO ₃ -') & Nitrite (NO ₂ -') as Nitrogen Chlorophyll-a (periphyton/phytoplankton)	≤0.06 mg ≤ 1.0 mill percentil	g/I (50th percent ligrams/litre (50	th	These variables are indicators of nutrient enrichment of water resources (N:P ratios). There is an impact of algae observed in the reach		
1.3 River from Boegebe		Pa		Salts	maintained/improved to support the aquatic ecosystem, domestic and irrigation water users and maintain the	Electrical Conductivity Total Dissolved Salts (TDS) Sulphate Calcium Chloride	≤300 mg/l ≤50 mg/l ≤35 mg/l	m (95th percenti :/I (95th percentil I (95th percentil I (95th percentil I (95th percentil	ile) e) e)	Fitness for use and maintenance of present state (prevention of decline)
Orange F				_		The presence of pathogens should not pose a risk to human health and impact on agricultural product quality.	Escherichia coli	≤ <mark>130</mark> Col	lony forming cou	ints per 100
		pH range must be maintained within limits specified to support the aquatic ecosystem and water user requirements Baseline monitoring must be undertaken to determine seasonal trends turbidity to confirm a numerical limit. The trends in total suspended solids concentration must be monitored.	limits specified to support the aquatic	pH range	6.5 (5th percentile) and 9.0 (95th percentile)		9.0 (95th	Fitness for use for users and ecosystem quality requirements.		
					not change by >1 ned background ration.	0% from	Water clarity is an indication of improved water quality. Sediment impacts from upstream land uses.			
			Dissolved oxygen levels must be improved to support the aquatic ecosystem.	Dissolved Oxygen	≥ 7 mg/l	O ₂ (95th percen	tile)	Low oxygen levels associated with organic matter emanating from upstream activities including WWTW are negatively impacting		

Resource Unit	Component	Sub- component	RQO	Indicator	Numerical Limit/ measure	Context/Rationale for RQO/Numerical limit
				Aluminium (AI)	≤ 0.105 milligrams/litre (mg/l) (95th percentile)	Strictest of Ecological specifications. Ecological Reserve manual (2008).
				Manganese (Mn)	≤ 0.15 milligrams/litre (mg/l) (95th percentile)	South African Water Quality Guidelines (1996)
	Quality	Toxics	The concentrations of toxins should not be toxic to aquatic organisms and a threat to human health or	Iron (Fe)	≤ 0.1 milligrams/litre (mg/l) (95th percentile)	Manganese/Iron – Domestic user water quality guideline (SAWQGs, 1996). Strictest of Ecological specifications.
	Quanty	TOXICS	agricultural produce.	Ammonia as N	≤ 0.073 milligrams/litre (mg/l) (95th percentile)	Ecological specification. Ecological Reserve manual (2008).
gton				Atrazine	≤0.078 milligrams/litre (mg/l)	Ecological specification. Ecological Reserve manual (2008). No monitoring data. Australian drinking water guideline.
Jpir				Mancozeb	≤0.009 milligrams/litre (mg/l)	USEPA drinking water guideline
eir to L				Glyphosate	≤0.7 milligrams/litre (mg/l)	Ecological specification. Ecological Reserve manual (2008).
1.3 egeberg we			The Ecological Category should be maintained at a Category C.	FRAI Category and Score	FRAI >62%	The ensure there is no degradation of ecological status to EC of D/E
1.3 Orange River from Boegeberg weir to Upington	Biota	Fish	A slow-deep velocity-depth class within reach is required throughout the year to ensure population integrity of juvenile indicator fish species as listed. This velocity depth class is linked to flow regulations, seasonality that is required for operation of the system. A fast-shallow velocity-depth class in reach during summer high-flow period should be maintained, to support the population integrity of the listed indicator adult fish species.	Key species and abundance	Enteromius trimaculatis (ETRI) - Present at 25% to 50% of sites (FROC = 3) Labeobarbus aeneus (LAEN) - Present at 25% to 50% of sites (FROC = 3) Austroglanis sclateri (ASCL) - Present at 25% to 50% of sites (FROC = 3) Maintain habitat types (i.e. riffles	Presence of <25% FROC of the indicator species at the sites and indicate loss of flow and habitat. Concern is increased sedimentation
			Riffles, minimally embedded cobbles and gravels for main stem Orange River (for spawning habitats) must be available.	avels for main stem Orange for spawning habitats) must be		of rapids and riffles, with excessive algal growth on all substrates.
	WATER IS	LIFE - S	ANITATION IS DIGNITY		sedimentation (erosion)	

Resource Unit	-	Sub- component	RQO	Indicator	Numerical Limit/ measure	Context/Rationale for RQO/Numerical limit
		Fish	Ensure no illegal fish netting (i.e. gill netting)		Regular visual observations and compliance monitoring through the DWS and relevant role-players in the catchment.	Significant increase in illegal fishing along Orange River. Decline in fish populations observed.
		Instream	The Ecological Category should be maintained at a Category C or greater.	Score and category	IHI: instream score ≥62%	
			The Ecological Category should be maintained at a Category C or greater.		IHI: riparian score ≥62%	Loss and degradation of
		Riparian habitat	Alien Invasive Plant (AIP) clearing and control within the riparian zone. Ensure alien macrophytes instream are controlled.	Score and category	Monitor and manage through the IHI compliance	instream and riparian habitat
			Revegetate riparian zone with indigenous vegetation for bank stability, erosion prevention and habitat integrity		Monitor and manage through the Riparian IHI compliance	
C C			The Ecological Category should be maintained within a C Category.	MIRAI Category and Score	MIRAI score ≥62	
1.3 Orange River from Boegeberg weir to Upington	Biota		To ensure that the SASS scores attained, support the specified Ecological Category.	SASS5 Total Score and ASPT	To ensure that the SASS5 scores and ASPT values occur in the following range: SASS5 score: >120; ASPT value: >6.1	
		Aquatic inverte- brates	To maintain suitable flow velocity (>0.6m/s) and to maintain clean, unembedded surface area (cobbles) to support the following flow-dependent taxa:	Dominant taxa		
			Baetidae >2sp		Minimum abundance of an B attained (10 - 100 individuals). If Baetidae >2sp is missing in two consecutive surveys or has a single individual present in two consecutive surveys. Velocities decrease below 0.6m/s for longer than a week, water quality deterioration and biotopes become exposed.	
			Heptageniidae		Minimum abundance of an A attained (atleast 10 individuals). If Heptageniidae is missing in two consecutive surveys or has a single individual present in two consecutive surveys. Velocities decrease below 0.6m/s for longer than a week, water quality deterioration and SIC become exposed.	
			Ensure that no family dominates the macroinvertebrate assemblage, defined as D (>1000) abundance for more than two consecutive surveys.	Taxon dominance		
		Diatoms	Ecological water quality should be maintained as moderate quality	Specific Pollution Sensitivity Index (SPI); Percentage pollution tolerant values (%PTV)	SPI: 9-13 PTV: 20 to < 40%	

Resource Units 1.1 to 1.4 in IUA 1:

- 1.1 Lower Orange River to the Brak River confluence
- 1.2 Orange River from Brak River to Boegeberg weir
- 1.3 Orange River from Boegeberg weir to Upington
- 1.4 Orange River from Upington to Hartbees River confluence
- 1.5 Orange River from Kakamas to Augrabies

Class III

IUA 1 – Lower Orange River from the Upper Orange confluence to Augrabies

Resource Unit 1.1: Orange River to the Brak River confluence

Mainstem, land activities and impacts homogenous along reach from the Vaal River confluence (intensive agriculture), flow and quality similar, includes the De Hoek (Irene) weir and WMS monitoring point. PES is predominantly a D category. Includes a groundwater SWSA. Inter-basin transfers - to downstream agricultural users and Namibian allocation. Large scale commercial farms (large abstractions and return flows). Mazelsfontein/Katlani weir area along the reach. Upstream water quality impacts (Douglas, Prieska poor quality).

Resource Unit 1.2: Orange River from Brak River to Boegeberg weir

Mainstem. Contribution of the Brak River tributary confluence and system break at Boegeberg weir (with Soutloop inflow). Land use similar and reach homogenous in terms of flow and quality. Intensive agriculture and town impacts. PES category C. Reach is FEPA fish sanctuary (has good fish diversity). Boegeberg weir and WMS monitoring point.

Inter-basin transfers - to downstream agricultural users and Namibian allocation. Large scale irrigated agricultural schemes. Mining activities: alluvial diamond mining and Tiger's - future prospecting. Prieska - Urban area and associated sewage works discharge.

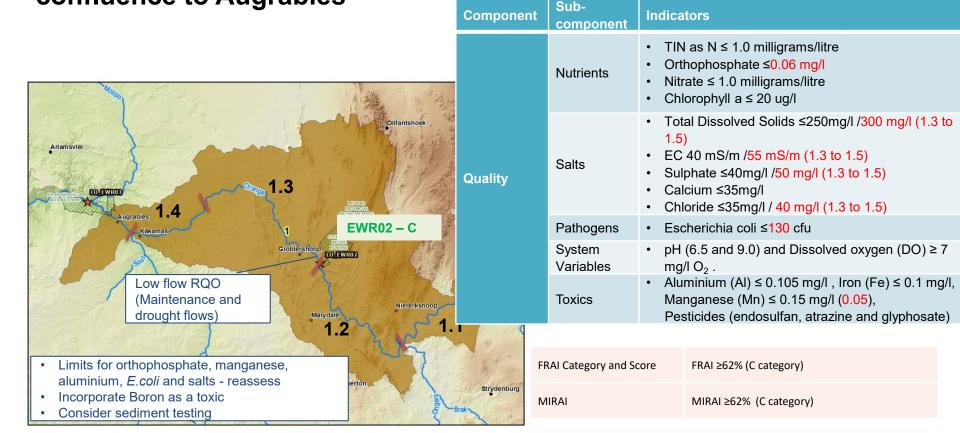
Resource Unit 1.3: Orange River from Boegeberg weir to Upington

Mainstem. RU extends to Upington (impact of the urban centre). Land use similar and reach homogenous in terms of flow and quality (intensive agriculture). PES category D. Reach is FEPA fish sanctuary area (has good fish diversity).

Inter-basin transfers - to downstream agricultural users and Namibian allocation. Upington (impact of the urban centre). Land use similar: intensive agriculture - large scale irrigated agricultural schemes. Agro-processing industries (possible water quality impact). Loss Instream habitat and fish migration.

Resource Unit 1.4: Orange River from Upington to Hartbees River confluence

Mainstem. Upington at the start of the RU results in an impact and change to water quality, with a PES category of D/E, warranting a separate RU. Reach also dominated by intensive agricultural activity. Includes the Neusberg weir and WMS monitoring point. Reach is FEPA fish sanctuary area. RU extends to the Hartbees River confluence as a logical break in system just upstream of Kakamas.


Inter-basin transfers - to downstream agricultural users and Namibian allocation. Hydropower at Neusberg - link via canals operation (minimum volume to turbine). Large scale irrigated agricultural schemes. Agroprocessing industries (possible water quality impact). Upington (impact of the urban centre) - sewage Works – 16ML discharge.

Resource Unit 1.5: Kakamas to Augrabies Waterfall

Mainstem. RU dominated by intensive agricultural activity. Extends from Hartbees contribution to reach, to logical break at Augrabies Waterfall. Flow and quality similar (impacted). PES is predominantly a C/D category. Reach is FEPA

Inter-basin transfers - to downstream agricultural users and Namibian allocation. End of canal return flows. Diffuse return flows (contribution to baseflows). Intense irrigation agricultural use at Kakamas. Kakamas Town impacts. Sewage works discharging poor quality effluent.

Resource Unit 1.1 to 1.5 in IUA 1 - Orange River from the Upper Orange confluence to Augrabies

Class III

Resource Unit 1.5: Kakamas to Augrabies Waterfall

Mainstem. RU dominated by intensive agricultural activity. Extends from Hartbees contribution to reach, to logical break at Augrabies Waterfall. Flow and quality similar (impacted). PES is predominantly a C/D category. Reach is FEPA.

Inter-basin transfers - to downstream agricultural users and Namibian allocation. End of canal return flows. Diffuse return flows (contribution to baseflows). Intense irrigation agricultural use at Kakamas. Kakamas Town impacts. Sewage works discharging poor quality effluent.

Resource Unit 2.1 in IUA 2: Augrabies Gorge

Class III

No flow RQO

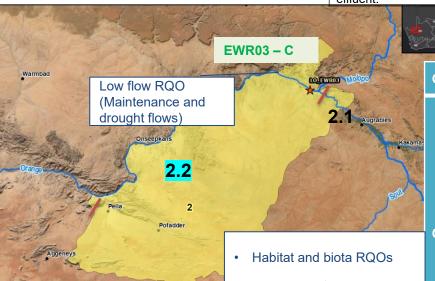
IUA 2 - Lower Orange River from downstream Augrabies to Pella

Resource Unit 2.1: Augrabies Gorge

Mainstem. Reach within the Augrabies National Park. Tourism activity and conservation area warranting a separate RU for higher protection. PES is B category. Reach is FEPA fish sanctuary. (has unique threatened fish species). Impacts from upstream activities are present. Intense irrigation, WWTWs discharges and urban/agro-processing industrial contributions. Releases are made for inter-basin transfers downstream.

	Component	Sub- component	Indicators
Warmbad Cog sweet McCopo 22.1		Nutrients	 TIN as N ≤ 1.0 milligrams/litre Orthophosphate ≤0.06 mg/l Nitrate ≤ 1.0 milligrams/litre Chlorophyll a ≤ 20 ug/l
Onsepkans Kal	Quality	Salts	 Total Dissolved Solids ≤300mg/l EC 55 mS/m Sulphate ≤50mg/l Calcium ≤40mg/l Chloride ≤50mg/l
Potadder		Pathogens	• Escherichia coli ≤130 cfu
		System Variables	 pH (6.5 and 9.0) and Dissolved oxygen (DO) ≥ 7 mg/I O₂.
Habitat and biota RQOs		Toxics	 Aluminium (Al) ≤ 0.105 mg/l, Iron (Fe) ≤ 0.1 mg/l, Manganese (Mn) ≤ 0.15 mg/l (0.05), Pesticides (endosulfan, atrazine and glyphosate)

Reevaluate salinity and sulphates to more appropriate ranges.


FRAI Category and Score	FRAI ≥62% (C category)
MIRAI	MIRAI ≥62% (C category)

Resource Unit 2.2 in IUA 2: Below Augrabies Gorge to Pella

Resource Unit 2.2: From below Augrabies Gorge to Pella

Mainstem. Land use activity changes with intensive irrigation along reach (Blouputs irrigation). Molopo River tributary contribution at the start of the RU, to Pella at outlet of IUA. Flow and quality (similar). PES is B and C category along reach. Includes flow and water quality monitoring at Pella. Inter-basin transfers - to downstream agricultural users and Namibian allocation. Impacts of Blouputs and Onseepkans, Pofadder Towns. Mining activities are present. Sewage works (package plants in Onseepkans and Blouputs) discharging poor quality effluent.

Class III

- Sulphate: currently 60, recommendation to be changed to 45. Average recorded is 48. TDS recorded 200-316 mg/l. Chloride lowest was 31 and the highest was 48.9. Definite increase from 2023-2025.
- Proposed 45mg/l for sulphate and 300 mg/l for TDS.
- Confirm the increase in sulphate along the reach (review quality over distance)
- Remove reference to total coliforms, making range stricter for E.Coli.
- Incorporate Boron and sediment testing where feasible.
- Possibility of incorporating whole effluent toxicity testing.
- Concern around the issuing of licences in line with water quality parameters (e.g., Nitrates less than 1).
- Re-evaluate manganese and aluminium limits.

Component	Sub- component	Indicators
	Nutrients	 TIN as N ≤ 1.0 milligrams/litre Orthophosphate ≤0.06 mg/l Nitrate ≤ 1.0 milligrams/litre Chlorophyll a ≤ 20 ug/l
Quality	Salts	 Total Dissolved Solids ≤350mg/l EC 60 mS/m Sulphate ≤60mg/l Calcium ≤40mg/l Chloride ≤60mg/l
	Pathogens	• Escherichia coli ≤130 cfu
	System Variables	 pH (6.5 and 9.0) and Dissolved oxygen (DO) ≥ 7 mg/l O₂.
	Toxics	 Aluminium (AI) ≤ 0.105 mg/l, Iron (Fe) ≤ 0.1 mg/l, Manganese (Mn) ≤ 0.15 mg/l (0.05), Pesticides (endosulfan, atrazine and glyphosate)
		Component Component Nutrients Salts Pathogens System Variables

FRAI Category and Score	FRAI ≥62% (C category)
MIRAI	MIRAI ≥62% (C category)

Resource Unit 3.1 in IUA 3: Pella to Vioolsdrift weir (IUA)

Pofadder

Class III

Vioolsdrif

Vioolsdrif

Grange

Orange

Resource Unit 3.1: As IUA delineation (from Pella to Vioolsdrift weir)

Mainstem. RU delineated as the IUA. Vioolsdrift weir forms a logical break in the system. Comprises part of the Orange River Gorge Ecoregion. Similar land activity and reach is relatively homogenous. The area is dominated by intensive agricultural on both sides of the Orange River (South African and Namibian). PES is B and C category along reach.

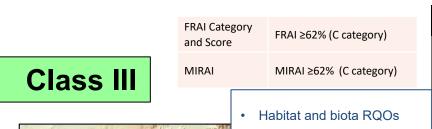
Inter-basin transfer to downstream agricultural users and Namibian allocation. Large scale irrigated agricultural schemes. Mining activities include alluvial diamond mining, heavy minerals. Cattle grazing leading to erosion. Small Towns – Goodhouse, O Kiep, Springbok (domestic abstraction).

Habitat and biota RQOs

- Reevaluate salinity RQOs to more appropriate ranges.
 - Align to RU 2.2 water quality RQOs
 - Proposed EC 45 mS/m, 45mg/l for sulphate and 300 mg/l for TDS., chloride 40 mg/l

3.1

- Confirm the increase in sulphate along the reach (review quality over distance)
- Remove reference to total coliforms, making range stricter for E.Coli. (100 cfu/100ml)
- Incorporate Boron and sediment toxicity testing where feasible.
- Possibility of incorporating whole effluent toxicity testing.
- · Re-evaluate manganese and aluminium limits.


	Component	Sub- component	Indicators
)		Nutrients	 TIN as N ≤ 1.0 milligrams/litre Orthophosphate ≤0.06 mg/l Nitrate ≤ 1.0 milligrams/litre Chlorophyll a ≤ 20 ug/l
	Quality	Salts	 Total Dissolved Solids ≤350mg/l EC 60 mS/m Sulphate ≤60mg/l Calcium ≤40mg/l Chloride ≤60mg/l
		Pathogens	• Escherichia coli ≤130 cfu
		System Variables	 pH (6.5 and 9.0) and Dissolved oxygen (DO) ≥ 7 mg/l O₂.
		Toxics	 Aluminium (AI) ≤ 0.105 mg/l, Iron (Fe) ≤ 0.1 mg/l, Manganese (Mn) ≤ 0.15 mg/l (0.05), Pesticides (endosulfan, atrazine and glyphosate)

No flow RQO

FRAI Category and Score	FRAI ≥62% (C category)
MIRAI	MIRAI ≥62% (C category)

WATER IS LIFE - SANITATION IS DIGNITY

Resource Units 4.1 to 4.3 in IUA 4:

EWR05 - C/D

Resource Unit 4.1: Vioolsdrift weir to D82H

Mainstem. Extends from the weir to the logical break at the conservation area of the Richtersveld Park. Intensive irrigation along reach (Noordoewer Irrigation Scheme – Namibia), and diamond mining. FEPA and a fish corridor in D82H. PES is a B and C category along reach. Inter-basin transfer to agricultural users and Namibian allocation. Vioolsdrift Town.

Resource Unit 4.2: Richtersveld National Park

Mainstem. National Park and critical conservation area (A!-Ais Richtersveld) warranting a separate RU. Reach serves as a fish corridor (FEPA). Tourism activity. PES of B/C category. Intense mining activities – serious impact on riparian habitat.

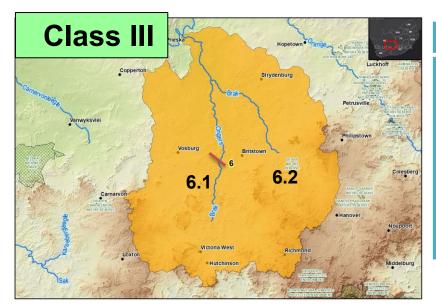
Resource Unit 4.3: Upper portion of D82L up to EFZ

Mainstem. Change is land use activities below the protected area – includes agriculture along the Orange River and mining (alluvial diamond mines) – warranting a separate RU. Extends to the estuary boundary (end of river system). C category PES.

Illuvial diamond mining is significant (Sanddrift to Koeboes). WWTW impacts of small towns.

I			impad
	EWR Low and high flows	4.2	Reso
	nows	GENTRESVALO GRADOLINA GRADA 4	Mains and n syste Alluvi
	Oranjemund 4.3	tinenaminastiko guindan guindan guindan	Alluvi
	Alexander Byy Comp	4.1 Oral	Viools
	Stricter limits	EWR04 - 0	C/D
	OrthophosphateSulphate (45 mg/l)Salinity (300 mg/l)	EWR Low and high flows	

CO_EWR05


Reevaluate salinity RQOs to more appropriate ranges.

- Align to upper RUs
- Remove reference to total coliforms, making range stricter for E.Coli. (100 cfu/100ml)
- Incorporate Boron and sediment toxicity testing where feasible.
- Possibility of incorporating whole effluent toxicity testing.
 - Re-evaluate manganese and aluminium limits

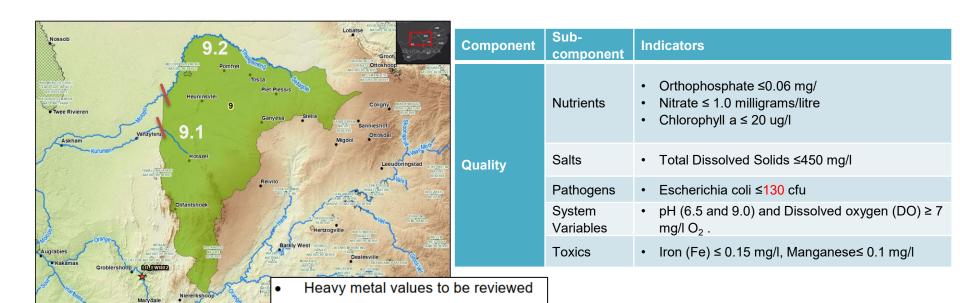
	Component	Sub- component	Indicators
	Nutrients	 TIN as N ≤ 1.0 milligrams/litre Orthophosphate ≤0.06 mg/l Nitrate ≤ 1.0 milligrams/litre Chlorophyll a ≤ 20 ug/l 	
とうこととい	Quality	Salts	 Total Dissolved Solids ≤400mg/l Sulphate ≤60mg/l Calcium ≤40mg/l Chloride ≤40mg/l
		Pathogens	• Escherichia coli ≤130 cfu
		System Variables	• pH (6.5 and 9.0) and Dissolved oxygen (DO) $\stackrel{?}{=}$ 7 mg/l O ₂ .
		Toxics	 Aluminium (AI) ≤ 0.105 mg/l, Iron (Fe) ≤ 0.1 mg/l, Manganese (Mn) ≤ 0.15 mg/l, Pesticides (endosulfan, atrazine and

glyphosate)

Resource Unit 6.1 in IUA 6: Upper Ongers River to confluence with Groen River

Component	Sub- component	Indicators
	Nutrients	 Orthophosphate ≤0.125 mg/ Nitrate ≤ 1.0 milligrams/litre Chlorophyll a ≤ 30 ug/l
Quality	Salts	 Total Dissolved Solids ≤450 mg/l
	Pathogens	• Escherichia coli ≤130 cfu
	System Variables	• pH (6.5 and 9.0) and Dissolved oxygen (DO) ≥ 7 mg/l O ₂ .

- To include fish RQO addition of Labeobarbus kimberleyensis (LKIM) - Present at 10% of sites during summer (FROC=1).
- Confirm monitoring of the rivers (sampling)


Resource Unit 6.1: Upper Ongers River to confluence with Groen River

Area is homogenous in biophysical characteristics and land use. Commercial agriculture (livestock) and some mining. River systems are largely ephemeral. Logical break at Smart Syndicate Dam. Groundwater dependant. Victoria West Town impacts (WWTW).

Resource Unit 6.2: Upper reach of Brak River

RU incorporates the town of De Aar. Delineation driven by impacts of the town area and water use (water quality impacts). C and D PES category (for reaches assessed). RU includes a groundwater SWSA and FEPAs. Groundwater dependant area.

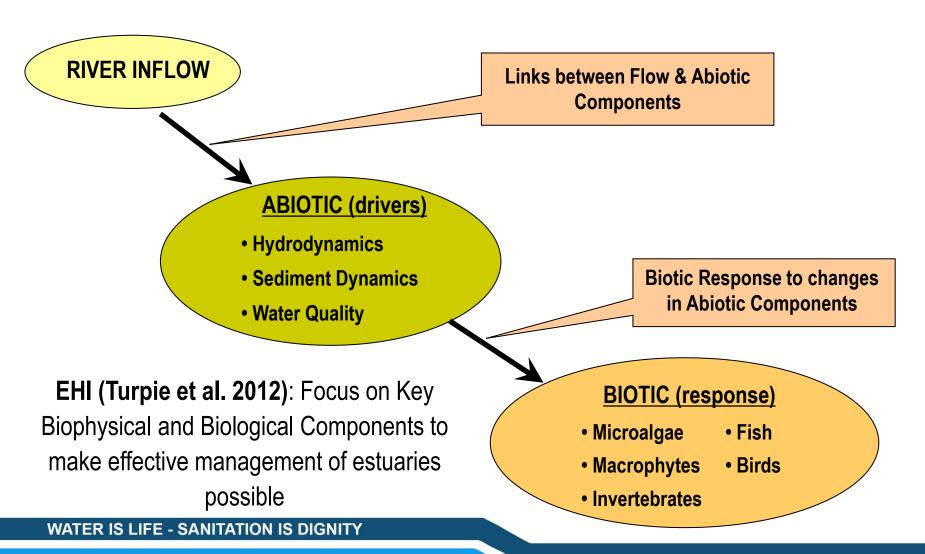
Resource Unit 9.2 in IUA 9: Upper Molopo and Upper Kuruman

Class III

Resource Unit 9.1: Upper Kuruman and tributaries

RU delineated based on land use activities, high density area - mining, towns and agriculture. Water quality impacts. Rivers are largely ephemeral. High dependence on groundwater. Includes groundwater SWSA. Some tourism activities are present. PES C and D category for reaches assessed. Towns of Hotazel and Khartoum. Industrial and mining activities (iron ore) (Sishen Mine (dewatering).

Resource Unit 9.2: Upper Molopo


Land use homogenous. Rivers are largely ephemeral. Predominantly subsistence and some commercial agriculture (livestock and crop farming). Largely rural with numerous villages. Groundwater SWSA. PES C category for reaches assessed. Groundwater driven RU.

Draft RQOs: Estuaries

7 Steps Procedure for RQO Determination (DWS, 2011)

Step 4: Prioritise sub-components for RQO determination and select indicators for monitoring;

DRAFT RESOURCE QUALITY OBJECTIVES: ORANGE RIVER ESTUARY

IUA 5 – Orange River Estuary

Resource Unit 5.1: Orange River Estuary

- The Orange Estuary is delineated as a RU. The estuary is a management unit with requirements and ecological specifications that are different to river systems.
- The Orange River Estuary is rated as 'highly important':
 - The area is a RAMSAR site requiring additional protection and management.
 - Protected Area on the Namibian side
 - Desired protected area in the South African Biodiversity Plan
- Flow related pressures include flow modification.
- Non-flow impacts include structures in estuary (human development), wastewater discharges, algal blooms, mining activities, toxic substances, fishing effort in the estuary, grazing and hunting.

DRAFT RESOURCE QUALITY OBJECTIVES: ORANGE RIVER ESTUARY

- REC should be aimed at a Category A or at least its best attainable state.
- In the case of the Orange River Estuary, the best attainable state, based on reasonable reversibility of pressures was estimated as Category C.
- While the C Category is the ecological objective over the long term, a C/D category is recommended as the Target Ecological Category (TEC) (interim over the next 10 years -2035/2040) until such time that some of the interventions both flow (e.g. mouth closure) and non-flow can be implemented to alleviate the stresses (this includes the building of the Vioolsdrift Dam to re-regulate the flow requirements).

Orange River Estuary RQOs (1)

Resource Unit	Component	Sub- component	RQO	Indicator	Numerical Limit/ measure
5.1 Orange River Estuary (8.5 km upstream)	Hydrology	Low Flows	Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality.	Base flows	Range: 2- 5 m³/s. Duration: 2 - 3 months at a time during the low flow period. Frequency: 2 - 4 years out of 10.
	Hydrodynamics	Mouth Condition	Maintain a mouth state to create the required habitat for birds, fish, macrophytes, microalgae and water quality. Increase retention time in winter	Mouth condition – Closure	2 > closure < 4 times in 10 years. Closed period 4 to 6 weeks
		Water Level	Maintain a mouth state to create the required habitat for birds, fish, macrophytes, microalgae and water quality. Increase retention time in winter. Maintain a seasonally variable water level regime that supports the recommended mouth breaching and closure cycles.	Water Level	Water level during closed state <2.5 m MSL.
	Quality	Salinity biotic state (fish,		River inflow (drought flows = 10% of the time)	25 > salinity < 40 lower reaches (0 - 6 km) 0 > salinity < 10 upper reaches (6 - 12 km) 0 > salinity < 5 backflooding zone (12 - 18 km)
			Salinity intrusion should maintain biotic state (fish, invertebrates, macrophytes and microalgae)	River inflow low flows	20 > salinity < 30 lower reaches for 5 > months < 7 of the year. 0 > salinity < 5 upper reaches for 5 > months < 7 of the year.
				River inflow high flows	Salinity > 1 for < 7 months of the year.
		Nutrients	Inorganic nutrient concentrations should maintain biotic state (fish, invertebrates, macrophytes and microalgae).	DIN + DIP: River inflow at Ernst Oppenheimer Bridge (D8H012Q01) or Sendelings Drift (low flows):	Maximum DIN consistently <100 μg/ℓ (e.g. two consecutive surveys) Maximum DIP consistently < 10 μg/ℓ

Orange River Estuary Draft RQOs (2)

Resource Unit	Component	Sub- component	RQO	Indicator	Numerical Limit/ measure
			Reduce nutrient input in lower Orange River.	DIN + DIP: River inflow at Ernst Oppenheimer Bridge (D8H012Q01) or Sendelings Drift (high flows):	Maximum DIN consistently < 150 μg/ ℓ Maximum DIP consistently < 20 μg/ ℓ
				DIN + DIP: Estuary (low flows - except during upwelling when concentrations in saline areas can be higher):	Maximum DIN consistently >100 μg/ℓ Maximum DIP consistently >10 μg/ℓ
				DIN + DIP: Estuary (high flows)	Maximum DIN consistently >150 μg/ℓ Maximum DIP consistently >20 μg/ℓ
		System	System variables (pH, DO and turbidity) should maintain biotic state (fish, invertebrates, macrophytes	River inflow at Ernst Oppenheimer Bridge (D8H012Q01) or Sendelings Drift (low flows)	6.5 > pH < 8.5 DO >5 mg/l Maximum Turbidity consistently <30 NTU (e.g. two consecutive surveys)
				River inflow at Ernst Oppenheimer Bridge (D8H012Q01) or Sendelings Drift (high flows)	6.5 > pH < 8.5 DO >5 mg/ <i>l</i> Turbidity: Naturally turbid (can be <200 NTU).
			and microalgae)	Estuary (low flows):	6.5 > pH < 8.5 DO >5 mg/ <i>l</i> Turbidity variable, dictated by river inflow
				Estuary (high flows):	6.5 > pH < 8.5 DO >5 mg/ <i>l</i> Turbidity variable, dictated by river inflow
Toxic substan			Presence of toxic substances not to	Water column toxic substances: River inflow (at Ernst Oppenheimer Bridge (D8H012Q01) / Sendelings Drift) and estuary:	Concentrations must not exceed targets as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995 or future updates).
	Toxic substances	cause exceedance of limits for biota. Should maintain biotic state (fish, invertebrates, macrophytes and microalgae)	River inflow (at Ernst Oppenheimer Bridge (D8H012Q01) / Sendelings Drift) and estuary: (Sediment toxic substance/ parameters not covered in SA guidelines)	Concentrations not to exceed targets as per Western Indian Ocean: Guidelines for Setting Water and Sediment Quality Targets for Coastal and Marine areas (UNEP et al. 2022)	
	Physical Habitat	Sediment dynamics	Flood regime to maintain the sediment distribution patterns and	Suspended sediments Bathymetric surveys	Average clay content of suspended sediments in river upstream of estuary <65%.

Orange River Estuary Draft RQOs (3)

Resource Unit	Component	Sub- component	RQO	Indicator	Numerical Limit/ measure
			aquatic habitat (instream physical habitat) so as not to exceed limits for biota.	LiDAR of EFZ	
		Microalgae	Phytoplankton biomass and cell density should not exceed prescribed limits. Median phytoplankton and microphytobenthos (MPB) biomasses should not exceed prescribed limits (TPC of 'very high' biomass). Decrease nutrient input and reduce base flows in winter where possible under current configuration.	Biomass using chlorophyll-a as an index. Community structure using phytoplankton groups and benthic diatoms.	Median phytoplankton <i>chl-a</i> should be > 8 μg/ℓ under 'normal flows'. Phytoplankton should be < 20 μg/ℓ and cell density should be < 10 000 cells/ml 'normal flows' (typical of blooms) Maintain median subtidal and intertidal benthic <i>chl-a</i> < 8 μg/ℓ and 42 mg/m². A 5% decrease in phytoplankton <i>chl-a</i> will relate to a 5% increase in microalgal score. This is mostly related to flow (low flow = higher residence time) and nutrients.
	Biota	Macrophytes	Maintain the diversity of macrophyte habitats in the estuary. Improve reeds and sedges covering Maintain submerged macrophyte Stuckenia pectinata (pondweed) in sheltered areas Macroalgae cover less than 1 ha. Increase vegetation cover in desertified marsh area by removal of causeway and improvement of tidal and flood channels. More than 50% of this area vegetated (approximately 250 ha).	Community structure using botanical survey and mapping (including alien invasive species).	Prevent further sedimentation in main channel and colonisation by vegetation. <50 % loss of reed and sedge habitats in non-flood year (due to salinity changes). > 300 ha of Reeds and sedges area cover. Presence of pondweed in non-flood years. Macroalgae cover < 1 ha in the estuary. > 200 ha vegetation cover in the desertified marsh area.
		Invertebrates	Retain Present State species richness and mix (low species abundance, high dominance).	Macrobenthos, Zooplankton and Macrocrustacea Community structure.	Species richness < 20 for zooplankton and macroinvertebrates respectively.

Orange River Estuary Draft RQOs (4)

Resource Unit	Component	Sub- component	RQO	Indicator	Numerical Limit/ measure
			Indicator species such as Capitella capitata, should not dominate benthic species abundance at the majority of sampling sites since their presence indicates anoxia conditions in the sediment. However, Capitella will naturally occur in high abundance in stagnant or poorly drained backwater areas.		C. capitata does not numerically dominate benthic species abundance at more than five of sampled sites in the Orange River estuary.
		Fish	Maintain species composition of estuary-associated marine species, non-dependent marine species and indigenous freshwater species. All numerically dominant species are represented by juveniles. The overall biomass of the dominant species <i>Chelon richardsonii</i> should not drop below the limit as prescribed.	Fish Recruitment Index (FRI) Community structure	Composition of estuary-associated marine species - 35 - 40%, Composition of non-dependent marine species - 20%, Composition of indigenous freshwater species - 45 - 50%, Non estuary associated marine or freshwater species become proportionally dominant. 0+ juveniles recruitment. C. richardsonii biomass > 90%.
		Birds	The estuary should contain a rich avifaunal community that includes representatives of all the original groups, significant numbers of migratory waders and terns, as well as a healthy breeding population of resident waders. The estuary should support over 8 000 waterbirds in summer and over 6 000 birds in winter.	Winter and summer bird counts	Bird numbers should not continue on a downward trajectory. The five-year average numbers of the 14 species for which the estuary supports more than 1% of the southern African or global population should not fall to below half of the average numbers reported by Anderson et al (2003): Blacknecked Grebe 125 Great White Pelican 473 Cape Cormorant 984

Numerical Limit/ measure		
Lesser Flamingo	1 031	
Greater Flamingo	700	
South African Shelduck	516	
Cape Shoveller	373	
Chestnutbanded Plover	97	
Pied Avocet	891	
Curlew Sandpiper	1 666	
Kelp Gull	1 098	
Hartlaub's Gull	707	
Caspian Tern	165	
Swift Tern	344	
Damara Tern	58	

DRAFT RESOURCE QUALITY OBJECTIVES: COASTAL ESTUARY

IUA 8: Coastal Areas

- IUA is primarily a groundwater driven system and, with the tributaries being ephemeral with very little to almost no surface flow.
- Coastal estuaries largely groundwater driven estuarine systems.
- Based on the groundwater categorisation, where aquifer stress, vulnerability and quality relevant for the groundwater classification, the proposed IUA class is Class III.
- The impact of marine aerosols and water-rock formation interaction along the West Coast GRU 8.3 is significant and puts a permanent (natural) saline signature on the groundwater quality (elevated salinity, e.g. NaCl and fluoride).

PES: Buffels, Swartlintjies, Spoeg, Groen & Sout

Component Category	Buffels	Swartlintjies	Spoeg	Groen	Sout
Hydrology	D/E	В	B/C	С	D/E
Hydrodynamics	D	В	В	С	E/F
Water quality	D	В	A/B	В	D
Physical habitat alteration	D	В	A/B	Α	E
Habitat health	D	В	В	В	D/E
Microalgae	D	В	A/B	В	E
Macrophytes	E	С	Α	В	E/F
Invertebrates	D	C/D	Α	С	E
Fish	E	В	Α	В	E/F
Birds	D	A/B	Α	В	E
Biotic health	D/E	B/C	Α	В	E
		-			
PES	VD	В	A/B	В	E
Confidence	Low	Low	Low	Low	Low

Coastal Estuaries Draft **RQOs** -Example of what you will see Context of the RQO and/ or Numerical Limit/ measure Component ROO Indicator component Flows should not exceed natural, and seasonal distribution should not be Desktop simulations of the I ong term monitoring compromised should be implemented surface hydrology indicate little Low Flows Base flows to inform numerical change in the surface water Current baseflows into the estuary flows, however this does not take limits should be upheld to maintain present into consideration the impact of mouth state and salinity regime. road infrastructure throughout the The distribution natterns of the flood catchment, and specifically just Long term monitoring components differ by no more than above the estuary that acts as High Flows High Flows should be implemented instream "farm dams". DWS to inform numerical (floods) (floods) and variability from that Floods need to reach the estuary.

Groundwater to be maintained at

Mouth open conditions to be

maintained within the current range

Rate at which mouth breaches to be

Flood regime to maintain sediment

distribution patterns and associated

not deviate by more than 20% of the

natterns in the estuary do not differ

significantly from present (± 0.5 m) (to

present sediment load-discharge

relationship (to be determined)

The sedimentation and erosion

Changes in sediment grain size

present. The median bed sediment

The sand/mud distributions in middle

and upper reaches do not change by

Maintain variability in salinity regime

Measurable increase in salinity in the

upper and middle reaches during the

diameter deviates by less than a

factor of two from present levels

(levels to be determined).

over a five-year average.

winter season

distribution patterns similar to

aquatic habitat (instream physical

The suspended sediment concentration from river inflow does

be determined).

Groundwater

Mouth

Sediment

patterns

distribution

Hydrodynamics

Resource Unit	Com

Resource

Numerical limit

Groundwater is estimated to be

recharge of the aquifer.

significantly modified with ground

Very little information is available

sensitive to flow modification (e.g

very small or shallow), and/or in

variation is allowed for over a 5-

Buffels estuary is very seldom

connected to the sea. Natural

3 to 7. Open mouth conditions

periods (days to a week or two)

as flood peaks in arid catchments

Context of the RQO and/ or

generally is a matter of hours with

Sediment distribution patterns are

connectivity in the estuary. The

shifts in the hydrodynamics are

remnants of roads) and reduce

groundwater input to the system

severely reduce, both within the

system and to the catchment and

Salinity limits were derived from

measured data or extrapolated for similar systems. Key determining

estuarine features used in setting

the salinity limits were estuary

size estuary depth % mouth

open and mouth position (i.e.

perched/not perched). Data sets

used include observations and

With estuarine connectivity being

largely due to structures (culverts

impacted by impacts on

marine environment

little follow up flow

would only prevail for short

breaching by flood waters estimated to have occurred every

an A or B Category, a ±5%

year period.

on the hydrodynamics of the

small Lower Orange Estuarine

Long term monitoring

Long term monitoring

I ona term monitorina

to inform numerical

should be implemented

Upper reaches: <5 PSU

Lower reaches: <20

to inform numerical

should be implemented

should be implemented

Groundwater

Mouth

condition

Sediment

(sediment

content)

composition

particle size

Component

component

nitrogen (DIN)

Dissolved

norganic

Dissolved

inorganic

Turbidity

Oxygen

phosphorus

ROO

Instream concentration of nutrients a specified must be maintained to

protect the aquatic ecosystem health

and ensure the prescribed ecological

Lower turbidity levels in estuary.

Estuary should be well-oxygenated

throughout

Resource

category is met.

Context of the RQO and/ or

Available data on the water quality of the Buffels Estuary is

limited. Based on a general

understanding of water quality

characteristics in estuaries along

this part of the coast, as well as

expert knowledge, target ranges

were proposed for various water

quality health categories, where

the condition of any parameter had to be improved. Otherwise,

the present (measured) water

quality concentration is specified Very limited data is available ion turbidity in the estuary. Available data suggest that turbidity in the

estuary is high. Harrison (1998)

measured in the lower reaches

during September 1993 to high concentrations of suspended

algae concentrations occurring a Dissolved oxygen is an essential for most aquatic life. Anthropogenic sources that may influence dissolved oxygen

concentration are those with high

oxygen demand such as high

oxygen demand or chemical

stormwater run-off, sewage

wastes. A frequently used

Organic and

inorganic constituents.

pathogens

Biomass using

chlorophyll-a

as an index.

Community

phytoplanktor

groups and

diatoms

are based on historical data and

descriptions and are considered to be of low confidence. Expert opinion and Google images were

used to make the assessments

Based on analysis of available

data and expert opinion informed by first-hand knowledge of small west coast estuaries. Estuaries

sampled by the researchers were

salinity regime. Preliminary fish lists (% abundance and frequency

ategorised according to their

of occurrence) were based on

availability and human disturbance affect community composition and species

ROOs set for based on analysis

knowledge of small west coast

available information. Changes in habitat, food

oxygen demand. These include

discharge and certain industrial

Numerical Limit/ measure

estuarine waters not to

exceed targets as per

Guidelines for coasta

marine waters (DWAF,

to exceed targets as per

WIO Region guidelines

Convention Secretariat

Long term monitoring

to inform numerical

should be implemented

Long term monitoring

Phytoplankton chl-a >

blooms and should not

to inform numerical

20 ug/L represents

occur in this system.

<20% change in the

area covered by

should be implemented

concentrations in

SA Water Quality

concentrations in

(UNEP/Nairobi

and CSIR, 2009).

Substance

Context of the RQO and/ or

Various water quality constituents

affect biological health. These are

No data on toxic substances were

available. It was assumed that

adjacent mining activities have

diffuse runoff golf course and

contributed to some toxic

contamination in the system

Microalgae are an important

and benthic invertebrates.

estuary. Reduced flow and

carbon source for zooplankton

Diversity and abundance typically

highest in fresh unner reaches of

greater salinity intrusion increase

microalgal biomass and diversity

Extended mouth closure likely to

result in loss in diversity and

phytoplankton biomass and increase in benthic microalga

The limits are set based on

available data and field surveys

(DWS, 2017), Macrophyte limits

can stimulate algal growth or

classified into organic and

inorganic constituents, and

attributed the high turbidity

Numerical Limit/ measure

Entire estuary: average

Entire estuary: average >0.025 mg/l (aim for

Entire estuary: average

<20 NTU except during

Entire estuary: average

ROO

Substance concentrations in

Substance concentrations in

(WIO) Region guidelines

(UNEP/Nairobi Convention

estuarine sediment not to exceed

targets as per Western Indian Ocean

Maintain the distribution of different

Control nutrient input from golf cours

Maintain the distribution of current

phytoplankton groups (diverse

to prevent microalgal blooms

habitats (accounts for

natural changes due to the dynamic nature of

of plankton and benthic

assemblages (baseling

to be set) should not deviate by more than 25% at any point in the

opening and clos

occur and include estuarine resident and

Long term monitoring

should be impleme to inform numerical

comprise: 15 species and

Long term monitoring

to inform numerical

>100 individuals

community composition)

(DWAF, 1995)

estuarine waters not to exceed

targets as per SA Water Quality

Guidelines for coastal marine waters

≥4 ma/l

<0.3 mg/l (aim for

Category C).

Indicator

Suspended

Solids (TSS)

Secchi denth

Turbidimeter

Dissolved

Sub-

substances

Microalgae

mapping, including alier

Community structure: As

sampled by plankton net

nets/traps (as

appropriate)

structure: As

sampled by

Winter and

seine in oper

Biota

Maintain habitat diversity including

some freshwater wetland with reeds and rushes and submerged macrophytes such as pondweed

Growth of natural vegetation in areas where rooikrans is being removed.

invertebrate community structure to be maintained.

Maintain current community structure

No alien fish species should occur.

Fish should be free of lesions and

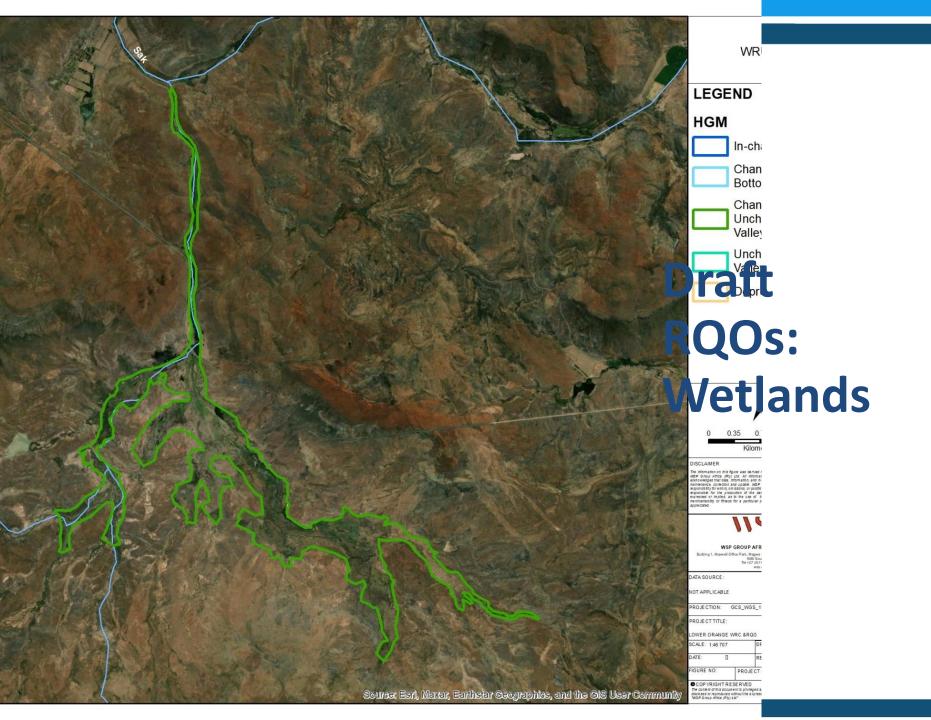
Should be dominated by waders and

Verify occurrence and cause of bird

other anomalies related to water

No fish kills should occur

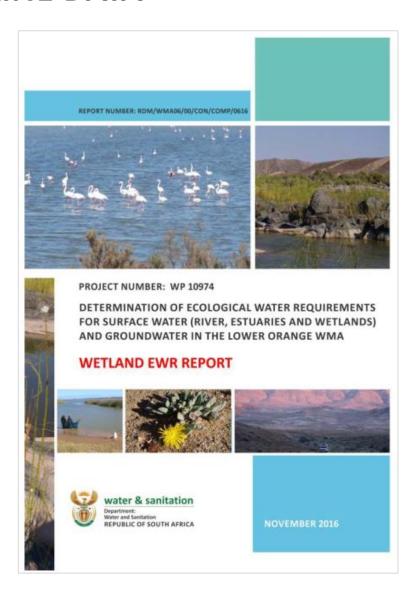
water birds that comprise.


Invertehrates

Fish

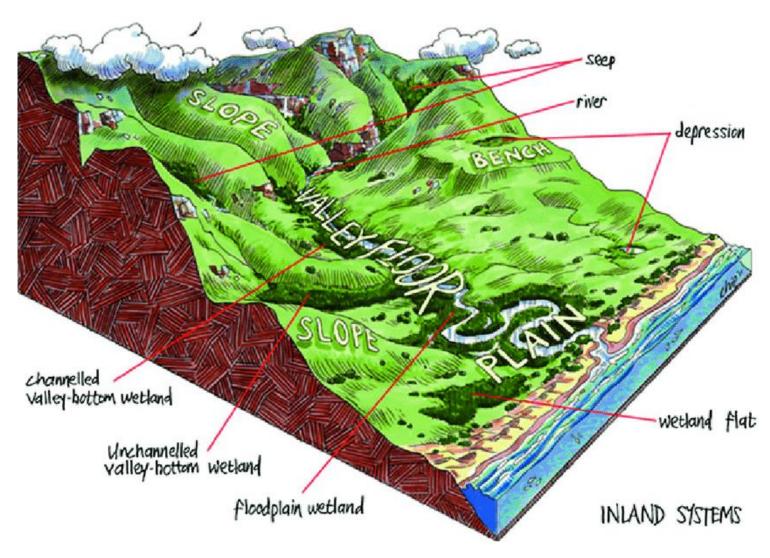
Birds

oxvaen (ma/L)


and/ or

WETLAND BASELINE DATA

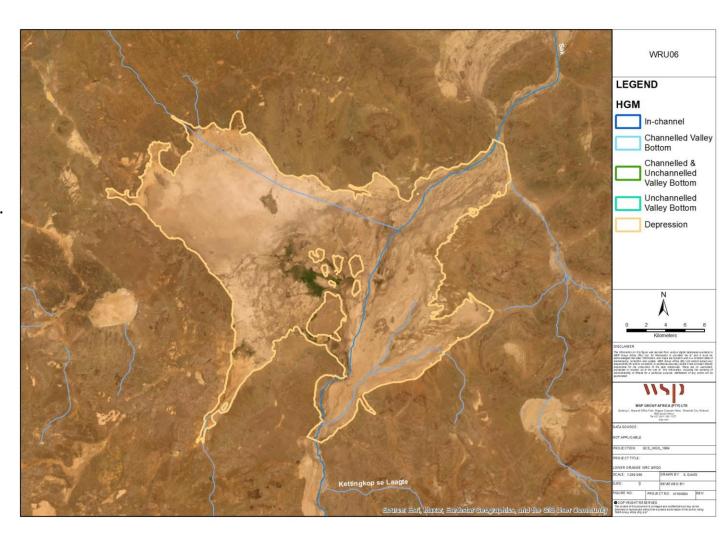
- Lower Orange Reserve Determination Study (2016).
- Scientific articles and theses, technical reports and rehabilitation/monitoring reports.
- 2025 Surveys



WETLAND RQO LIMITATIONS

- Current wetland information is limited, often due to access limitations.
- Limited to no flow or water quality data (especially updated information) are available for the majority of the priority wetlands.
- RQO's for the wetlands are qualitative.
- Due to limited data, confidence in the quantity and quality components is low and moderate for habitat and biota.

WETLAND TYPES


Proposed draft **RQOs for the 20 selected priority wetlands** within the Lower Orange River catchment

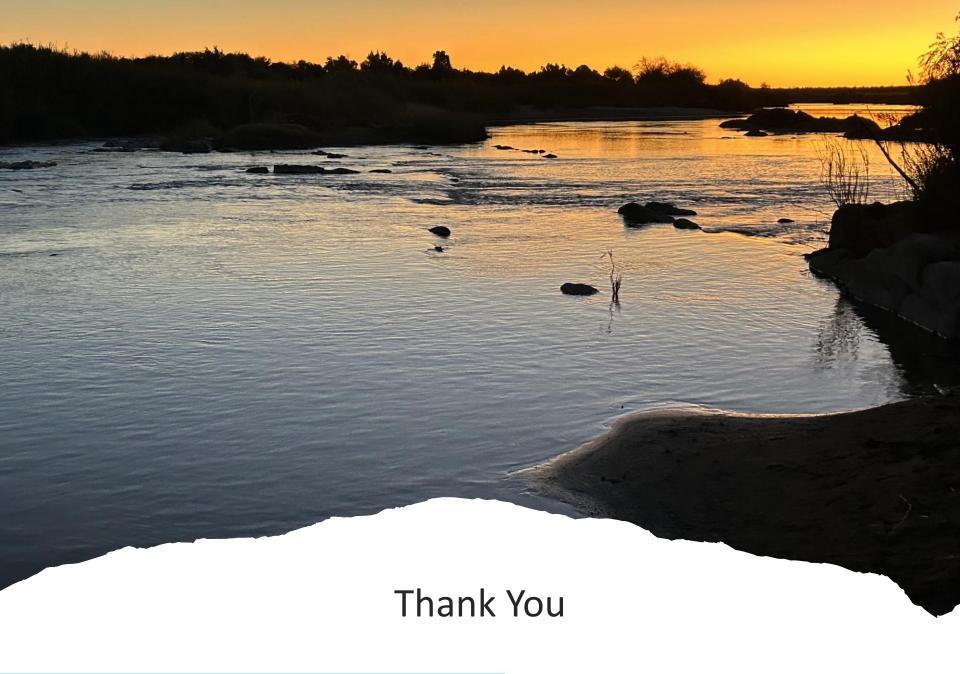
Priority Wetland	Catchment	IUA	IUA Name	Wetland	Туре
1	D61A	6	Brak Catchment	Merriman	In-channel wetlands
2	D52B	7	Hartbees/Sak Catchment	Agterste River	In-channel wetlands
3	D57C	7		Brandvlei	Depression
4	D56A	7		De Vreede	Channelled Valley Bottom wetland
5	D55A	7		Grootvlei	Channelled and Unchannelled Valley Bottom wetland
6	D57D	7		Grootvloer	Depression
7	D55K	7		Hongerlantein	In-channel wetlands
8	D57D	7		Narooga Pan	Depression
9	D58A, D51C, D56J	7		Riet-Renoster	In-channel and Channelled Valley Bottom wetland
10	D58C	7	1	Swartkolkvloer	Depression
11	D54C	7	1	Van Wyksvlei	Depression
12	D52A	7		Visrivier-wes	Channelled and Unchannelled Valley Bottom wetland
13	F30 & F50	8	Coastal Areas	Ramkamp	Unchannelled Valley Bottom wetland
14	F30	8		Xharas	Valley head seep and Channelled Valley Bottom wetland
15	D41L	9	Upper Molopo and Upper	Batlaros	Channelled Valley Bottom wetland
16	D41H	9	Kuruman	Heuningvlei	Depression & Hillslope Seepage wetlands
17	D41L	9]	Kuruman	Channelled Valley Bottom wetland
18	D42D	10	Lower Molopo and Upper	Klippan	Depression
19	D42D	10	Kuruman to confluence	Koppieskraal	Depression
20	D42D	10	with the Orange River	Soutpan	Depression

Example - IUA7: GROOTVLOER

Wetland Characteristics

- Depression
- Connected to the Sak River and forms part of Bushmanland endoreic pans, one of the most extensive salt pan systems in South Africa.
- Possibly South Africa's largest pan overall.
- ±60 472Ha
- Diversion of catchment flows- irrigation.
- Ephemeral flooding makes it a key
 Branchiopod habitat

Example of what you will see - GROOTVLOER


IU	Wetland	Wetland Type	PES	EIS	REC	Component	RQO	Indicator	Numerical Criteria	
7	7 Grootvloer Depression C High	С		Quantity	The relationship between the extent, depth and frequency of inundation to local rainfall and water inputs must be maintained.	be limited in the pan and pan catchment so that the depth and duration of inundation is maintained within the normal range for high, average and low rainfall years. Extent of dams and Surface Flow Reduction (SFR) activities (e.g. irrigated	the extent, depth and frequency of inundation to local rainfall and water inputs in the pan and pan catchment must not on average indicate a negative trend (reduction in inundation extent in relation to antecedent			
				Quantity	Flow and inundation regime through seasonal river inflow and groundwater contribution must be maintained to attain good wetland condition.	REC category (driven by groundwater quantity RQOs) (D57D)	PES score as specified for Habitat			
							Quality	Water quality impacts to the pan system must be restricted to ensure that the water and sediment chemistry remain within an acceptable normal range (anion and cation concentration to pan volume relationship) for the water	TDS, Total Alkalinity as CaCO ₃ , Sodium, Calcium, Magnesium, Sulphate, Iron, Chloride, Potassium, Magnesium,	Maintain the water chemistry pan type applicable. Annual baseline monitoring PES score as specified for Habitat

IUA7: GROOTVLOER

IUA	Wetland	Wetland Type	PES	EIS	REC	Component	RQO	Indicator	Numerical Criteria
							Flow and inundation regime through seasonal river inflow and groundwater contribution must be maintained to attain good wetland condition.	REC category (driven by groundwater quantity RQOs) (D57D)	
						Quality	chemistry pan type applicable.	Silica, Fluoride Ammonia, Nitrate and Fluoride.	Sample April every year (when surface water present)
						Habitat	Maintain or improve current PES category.	PES Category - As a minimum undertake a WET-Health Level 1a PES assessment (as per the method described by Macfarlane et al., 2020). For the PES assessment the latest available National or Provincial Land Cover datasets should be utilised for the wetland catchment, while detailed manual digitising of land cover within the wetland should be undertaken off latest available aerial imagery and supplemented through field verification by an experienced wetland specialist. Repeat as soon as new National or Provincial land cover data is available but at least every 5 years if possible and report on this with a view to assess if there have been any changes in the state of the system.	PES score above 60%

IUA7: GROOTVLOER

IUA	Wetland	Wetland Type	PES	EIS	REC	Component	RQO	Indicator	Numerical Cri	iteria
						Biota	The suitability of the local mosaic of depression wetland habitats for aquatic macroinvertebrates (Branchiopods) must be maintained.	Indicator Branchiopod species -	Branchiopod invelimited and requilexpansion, but sprecorded in RU acatchment D57D include: Species Branchipodopsis browni Branchipodopsis transversus Streptocephalus cafer Streptocephalus ovamboensis Streptocephalus papillatus Streptocephalus purcelli Streptocephalus valkyrie	res pecies and in

